Semitransparent Flexible Organic Solar Cells

Yuheng Wang , Yilin Chang , Jianqi Zhang , Guanghao Lu , Zhixiang Wei

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 343 -350.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 343 -350. DOI: 10.1007/s40242-020-0113-3
Review

Semitransparent Flexible Organic Solar Cells

Author information +
History +
PDF

Abstract

Abstract The semitransparent flexible organic solar cell takes advantages of flexibility, transparency, color adjustment property, which is more conducive to integrate on buildings and mobile terminals. Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors, the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%. This review summarizes the molecular design of the most representative active layer materials, and discusses the characterization of semitransparent parameters paradigms, then we discuss how to optimize the device in combination with optical simulation, and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells, and give our perspectives on the next step direction.

Keywords

Semitransparent / Flexible / Organic solar cell / Electrode / Optical simulation

Cite this article

Download citation ▾
Yuheng Wang, Yilin Chang, Jianqi Zhang, Guanghao Lu, Zhixiang Wei. Semitransparent Flexible Organic Solar Cells. Chemical Research in Chinese Universities, 2020, 36(3): 343-350 DOI:10.1007/s40242-020-0113-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A. Joule, 2019, 3(4): 1140.

[2]

Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci. Bull, 2020, 65(4): 272.

[3]

Hu Z, Wang Z, An Q, Zhang F. Sci. Bull, 2020, 65(2): 131.

[4]

Bai Y, Zhao C, Chen X, Zhang S, Zhang S, Hayat T, Alsaedi A, Tan Z A, Hou J, Li Y. J. Mater. Chem. A, 2019, 7(26): 15887.

[5]

Azzouzi M, Kirchartz T, Nelson J. Trends in Chemistry, 2019, 1(1): 49.

[6]

Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y J N P. Nat. Photonics, 2020, 14(5): 305.

[7]

Nakano K, Chen Y, Xiao B, Han W, Huang J, Yoshida H, Zhou E, Tajima K J N C. Nat. Commun, 2019, 10(1): 1.

[8]

Firdaus Y, le Corre V M, Khan J I, Kan Z, Laquai F, Beaujuge P M, Anthopoulos T D. Adv. Sci, 2019, 6(9): 1802028.

[9]

Sun Y, Chang M, Meng L, Wan X, Gao H, Zhang Y, Zhao K, Sun Z, Li C, Liu S. Nat. Electron, 2019, 2(11): 513.

[10]

Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y. Adv. Mater, 2020, 32(14): 1908478.

[11]

Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl. Sci. Rev., 2019.

[12]

Sun L, Zeng W, Xie C, Hu L, Dong X, Qin F, Wang W, Liu T, Jiang X, Jiang Y. Adv. Mater, 2020, 32: 1907840.

[13]

Ravishankar E, Booth R E, Saravitz C, Sederoff H, Ade H W, O’Connor B T. Joule, 2020, 4(2): 490.

[14]

Krebs F C, Espinosa N, Hösel M S R R J M. Adv. Mater, 2014, 26(1): 29.

[15]

Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv. Mater, 2019, 31(39): 1902210.

[16]

Qian Y, Zhang X, Qi D, Xie L, Chandran B K, Chen X, Huang W. Sci. China Mater, 201, 59(7): 589.

[17]

Song W, Fanady B, Peng R, Hong L, Wu L, Zhang W, Yan T, Wu T, Chen S, Ge Z. Adv. Energy Mater., 2020, 10: 1907840.

[18]

Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv. Mater, 2019, 31(39): 1902210.

[19]

Li Y, Lin J D, Che X, Qu Y, Liu F, Liao L, Forrest S R. J. Am. Chem. Soc, 2017, 139(47): 17114.

[20]

Lee S, Lee Y, Park J, Choi D. Nano Energy, 2014, 9: 88.

[21]

Cutting C L, Bag M, Venkataraman D. J. Mater. Chem. C, 201, 4(43): 10367.

[22]

Apostolou G, Reinders A, Verwaal M. Energy. Sci. Eng., 201, 4(1): 69.

[23]

Sci. Adv., 2017, 3(6):

[24]

Hamedi M M, Herland A, Zhang F, Pei Q. Adv. Mater., 2019, 31(22): 1901940.

[25]

Landerer D, Bahro D, Röhm H, Koppitz M, Mertens A, Manger F, Denk F, Heidinger M, Windmann T, Colsmann A. Energy. Tech-nol-Ger, 2017, 5(11): 1936.

[26]

Huang S, Liu Y, Zhao Y, Ren Z, Guo C F. Adv. Funct. Mater, 2019, 29(6): 1805924.

[27]

Zhang G, Xia R, Chen Z, Xiao J, Zhao X, Liu S, Yip H, Cao Y. Adv. Energy Mater, 2018, 8(25): 1801609.

[28]

Li Y, Xu G, Cui C, Li Y. Adv. Energy Mater, 2018, 8(21): 1701791.

[29]

Dai S, Zhan X. Adv. Energy Mater, 2018, 8(21): 1800002.

[30]

Brus V V, Lee J, Luginbuhl B R, Ko S, Bazan G C, Nguyen T. Adv. Mater, 2019, 31(30): 1900904.

[31]

Zheng Z, Yao H, Ye L, Xu Y, Zhang S, Hou J. Mater. Today, 2019.

[32]

Pettersson L A A, Roman L S, Inganas O. J. Appl. Phys, 1999, 86(1): 487.

[33]

Wang Y, Zhang Y, Lu G, Feng X, Xiao T, Xie J, Liu X, Ji J, Wei Z, Bu L. ACS Appl. Mater. Interfaces, 2018, 10(16): 13741.

[34]

Xia R, Brabec C J, Yip H L, Cao Y. Joule, 2019, 3(9): 2241.

[35]

Xia R, Gu H, Liu S, Zhang K, Yip H L, Cao Y. Solar RRL, 2019, 3(1): 1800270.

[36]

Yang C, Liu D, Bates M, Barr M C, Lunt R R. Joule, 2019, 3(8): 1803.

[37]

Traverse C J, Pandey R, Barr M C, Lunt R R. Nat. Energy, 2018, 3(2): 157.

[38]

Xu W, Gao F. Mater. Horizons, 2018, 5(2): 206.

[39]

Xiao Z, Jia X, Ding L. Sci. Bull., 2017, 62(23): 1562.

[40]

Fu H T, Wang Z H, Sun Y M. Angew. Chem., Int. Ed, 2019, 58(14): 4442.

[41]

Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater, 2015, 27(7): 1170.

[42]

Wang W, Yan C Q, Lau T K, Wang J Y, Liu K, Fan Y, Lu X H, Zhan X W. Adv. Mater, 2017, 29(31): 1701308.

[43]

Jia B, Dai S, Ke Z, Yan C, Ma W, Zhan X. Chem. Mater, 2018, 30(1): 239.

[44]

Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Yuan Y, Yi C, Hao F, Hua Y, Lei T, Lin Q, Sun K, Zhao D, Duan C, Shao X, Li W, Yip H L, Xiao Z, Zhang B, Bian Q, Cheng Y, Liu S, Cheng M, Jin Z, Yang S, Ding L. Sci. China: Chem, 2020.

[45]

Perdigón-Toro L, Zhang H, Markina A, Yuan J, Hosseini S M, Wolff C M, Zuo G, Stolterfoht M, Zou Y, Gao F. Adv. Mater., 2020, 32(9): 1906763.

[46]

Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z A, Hou J. Macromolecules, 2012, 45(24): 9611.

[47]

Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr O M, El-Labban A, Schwingenschlogl U, Tung V, McCulloch I, Laquai F, Anthopoulos T D. Adv. Mater, 2019, 31(46): 1902965.

[48]

Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules, 2012, 45(24): 9611.

[49]

Huang W, Li M, Zhang L, Yang T, Zhang Z, Zeng H, Zhang X, Dang L, Liang Y. Chem. Mater, 201, 28(16): 5887.

[50]

Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J. Adv. Mater, 2015, 27(39): 6046.

[51]

Zhao Y, Wang G, Wang Y, Xiao T, Adil M A, Lu G, Zhang J, Wei Z. Solar RRL, 2019, 3(3): 1800333.

[52]

Adil M A, Zhang J, Wang Y, Yu J, Yang C, Lu G, Wei Z. Nano Energy, 2020, 68: 104271.

[53]

Chou K W, Yan B, Li R, Li E Q, Zhao K, Anjum D H, Alvarez S, Gassaway R, Biocca A, Thoroddsen S T. Adv. Mater, 2013, 25(13): 1923.

[54]

Liu T, Gao W, Wang Y L, Yang T, Ma R J, Zhang G Y, Zhong C, Ma W, Yan H, Yang C L. Adv. Funct. Mater., 2019, 29(26): 9.

[55]

Pan M A, Lau T K, Tang Y, Wu Y C, Liu T, Li K, Chen M C, Lu X, Ma W, Zhan C. J. Mater. Chem. A, 2019, 7(36): 20713.

[56]

Bai Y, Zhao C, Chen X, Zhang S, Zhang S, Hayat T, Alsaedi A, Tan Z A, Hou J, Li Y. J. Mater. Chem. A, 2019, 7(36): 20713.

[57]

Hou J, Ingans O, Friend R H, Gao F. Nat. Mater., 2018, 17(2): 119.

[58]

Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H. Nat. Energy, 201, 1(7): 16089.

[59]

He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat. Photon, 2012, 6(9): 591.

[60]

Li T, Dai S, Ke Z, Yang L, Wang J, Yan C, Wei M, Zhan X. Adv. Mater., 2018, 30(10): 1705969.

[61]

Cui Y, Yang C Y, Yao H F, Zhu J, Wang Y M, Jia G X, Gao F, Hou J H. Adv. Mater., 2017, 29(43): 1703080.

[62]

Zhang J, Xu G, Tao F, Zeng G, Zhang M, Yang Y M, Li Y, Li Y. Adv. Mater., 2019, 31(10): 1807159.

[63]

Inganas O. Adv. Mater., 2018, 30(35): 1800388.

[64]

Xue Q F, Xia R X, Brabec C J, Yip H L. Energy Environ. Sci., 2018, 11(7): 1688.

[65]

Hedley G J, Ruseckas A, Samuel I D W. Chem. Rev, 2017, 117(2): 796.

[66]

Meyer A, Ade H. J. Appl. Phys, 2009, 106(11): 113101.

[67]

Mertens A, Mescher J, Bahro D, Koppitz M, Colsmann A. Opt. Express, 2016 24.

[68]

Liu Q, Gerling L G, Bernal-Texca F, Toudert J, Li T, Zhan X, Martorell J. Adv. Energy Mater., 2020, 10: 1904196.

[69]

Li X, Xia R, Yan K, Yip H, Chen H, Li C. Chin. Chem. Lett, 2019.

[70]

Kim J H, Jung S Y, Jeong I K. J. Opt. Soc. Korea, 2012, 16(1): 6.

[71]

Bergqvist J, Arwin H, Inganas O. ACS Photonics, 2018, 5(8): 3023.

[72]

Betancur R, Romero-Gomez P, Martinez-Otero A, Elias X, Maymo M, Martorell J. Nat. Photon, 2013, 7(12): 995.

[73]

Xue Q, Xia R, Brabec C J, Yip H L. Energy Environ. Sci, 2018, 11(7): 1688.

[74]

Tabor D P, Roch L M, Saikin S K, Kreisbeck C, Sheberla D, Montoya J H, Dwaraknath S, Aykol M, Ortiz C, Tribukait H J N R M. Nat. Rev. Mater, 2018, 3(5): 5.

[75]

Majeed N, Saladina M, Krompiec M, Greedy S, Deibel C, MacKenzie R C I. Adv. Funct. Mater, 2020, 30(7): 1907259.

[76]

Xiao T, Wang J, Yang S, Zhu Y, Li D, Wang Z, Feng S, Bu L, Zhan X, Lu G. J. Mater. Chem. A, 2020, 8(1): 401.

[77]

Zuo L, Zhang S, Shi M, Li H, Chen H. Mater. Chem. Front., 2017, 1(2): 304.

[78]

Sun C, Xia R, Shi H, Yao H, Liu X, Hou J, Huang F, Yip H L, Cao Y. Joule, 2018, 2(9): 1816.

[79]

Wen L, Chen Q, Sun F, Song S, Jin L, Yu Y. Sci. Rep., 2014, 4: 7036.

[80]

Zuo L, Zhang S, Li H, Chen H. Adv. Mater., 2015, 27(43): 6983.

[81]

Liu Y, Cheng P, Li T, Wang R, Li Y, Chang S Y, Zhu Y, Cheng H W, Wei K H, Zhan X, Sun B, Yang Y. ACS Nano, 2019, 13(2): 1071.

[82]

Bi Y G, Liu Y F, Zhang X L, Yin D, Wang W Q, Feng J, Sun H B. Adv. Opt. Mater, 2019, 7(6): 1800778.

[83]

Zhao G, Song M, Chung H S, Kim S M, Lee S G, Bae J S, Bae T S, Kim D, Lee G H, Han S Z, Lee H S, Choi E A, Yun J. ACS Appl. Mater. Interfaces, 2017, 9(44): 38695.

[84]

Choi K, Kim J, Noh Y, Na S, Kim H. Sol. Energy Mat. Sol. C, 2013, 110: 147.

[85]

Park H, Chang S, Zhou X, Kong J, Palacios T, Gradecak S. Nano Lett., 2014, 14(9): 5148.

[86]

Jeon I, Cui K, Chiba T, Anisimov A, Nasibulin A G, Kauppinen E I, Maruyama S, Matsuo Y. J. Am. Chem. Soc, 2015, 137(25): 7982.

[87]

Lu S, Lin J, Liu K, Yue S, Ren K, Tan F, Wang Z, Jin P, Qu S, Wang Z. Acta Mater, 2017, 130: 208.

[88]

Huseynova G, Kim Y H, Lee J H, Lee J. J. Inf. Disp, 2020, 21: 71.

[89]

Kang H, Jung S, Jeong S, Kim G, Lee K. Nat. Commun, 2015, 6: 6503.

[90]

Cui H, Song W, Fanady B, Peng R, Zhang J, Huang J, Ge Z. Sci. China: Chem, 2019, 62(4): 500.

[91]

Kim Y H, Sachse C, Machala M L, May C M-M L, Leo K. Adv. Funct. Mater, 2011, 21(6): 1076.

[92]

Lei T, Peng R, Huang L, Song W, Yan T, Zhu L, Ge Z. Mater. Today. Energy, 2019, 14: 100334.

[93]

da Silva W J, Kim H P, Yusoff A R B M, Jang J. Nanoscale, 2013, 5(19): 9324.

[94]

Song W, Peng R, Huang L, Liu C, Fanady B, Lei T, Hong L, Ge J, Facchetti A, Ge Z. iScience, 2020, 23(4): 100981.

[95]

Fujii S. Mater. Sci. Forum, 2018, 916: 212.

[96]

Kim N, Kang H, Lee J H, Kee S, Lee S H, Lee K. Adv. Mater., 2015, 27(14): 2317.

[97]

Seo J H, Hwang I, Um H D, Lee S, Lee K, Park J, Shin H, Kwon T H, Kang S J, Seo K. Adv. Mater, 2017, 29(30): 1701479.

[98]

Zhao B, He Z, Cheng X, Qin D, Yun M, Wang M, Huang X, Wu J, Wu H, Cao Y. J. Mater. Chem. C, 2014, 2(26): 5077.

[99]

J. Solid. State. SC, 2019, 8(2):

[100]

Lee K S, Kim I, Yeon C B, Lim J W, Yun S J, Jabbour G E. Etri. J., 2013, 35(4): 587.

[101]

Han Y, Chen X, Wei J, Ji G, Wang C, Zhao W, Lai J, Zha W, Li Z, Yan L, Gu H, Luo Q, Chen Q, Chen L, Hou J, Su W, Ma C Q. Adv. Sci, 2019, 6(22): 1901490.

[102]

Li T, Dai S, Ke Z, Yang L, Wang J, Yan C, Ma W, Zhan X. Adv. Mater, 2018, 30(10): 1705969.

[103]

Yang Y, Jin Q, Mao D, Qi J, Wei Y, Yu R, Li A, Li S, Zhao H, Ma Y, Wang L, Hu W, Wang D. Adv. Mater, 2017, 29(4): 1604795.

[104]

Che Y, Wang Y, You T, Chang H, Yin P, Zhai J. Chem. Res. Chi-nese Universities, 2018, 34(5): 780.

[105]

Wang S, Gao Y, Su X, Yan L. Chem. Res. Chinese Universities, 2018, 34(5): 771.

[106]

Wang Y, Wan J, Ding J, Hu J-S, Wang D. Angew. Chem., Int. Ed., 2019, 58(28): 9414.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/