PDF
Abstract
Searching for high-activity, stability and highly cost-effective electrocatalysts for acid oxygen reaction reduction(ORR) has always been an urgent problem in polymer electrolyte membrane fuel cells(PEMFCs). Nonetheless, the electrochemical properties of various systems have their intrinsic limits and tremendous efforts have been paid out to search for highly efficient electrocatalysts by more rational control over the size, morphology, composition, and structure. In particular, single-atom catalysts(SACs) have attracted extensive interest due to theirs excellent activity, stability, selectivity and the highest metal utilization. In recent years, the number of papers in the field of SACs has increased rapidly, indicating that SACs have made great progress. This review focuses on SACs electrochemical applications in the acid ORR and introduces innovative syntheses, fuel cell performance and long-time durability.
Keywords
Single-atom catalyst
/
Oxygen reaction reduction
/
Polymer electrolyte membrane fuel cell
Cite this article
Download citation ▾
Mengzhao Zhu, Jing Wang, Yuen Wu.
Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells.
Chemical Research in Chinese Universities, 2020, 36(3): 320-328 DOI:10.1007/s40242-020-0111-5
| [1] |
Debe M K. Nature, 2012, 486: 43.
|
| [2] |
Shao M H, Chang Q W, Dodelet J P, Chenitz R. Chemical Reviews, 201, 116: 3594.
|
| [3] |
Roger I, Shipman M A, Symes M D. Nature Reviews Chemistry, 2017, 1: 0003.
|
| [4] |
Morozan A, Jousselme B, Palacin S. Energy & Environmental Science, 2011, 4: 1238.
|
| [5] |
Jaouen F, Proietti E, Lefevre M, Chenitz R, Zelenay P. Energy & Environmental Science, 2010, 4: 114.
|
| [6] |
Bayatsarmadi B., Zheng Y., Vasileff A., Qiao S.-Z., Small, 2017, 1700191
|
| [7] |
Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443.
|
| [8] |
Liu J, Jiao M G, Lu L L, Barkholtz H M, Li Y P, Wang Y, Jiang L H, Wu Z J, Liu D-J, Zhuang L. Nature Communications, 2017, 8: 15938.
|
| [9] |
Zitolo A, Goellner V, Armel V, Sougrati M T, Mineva T, Stievano L, Fonda E, Jaouen F. Nature Materials, 2015, 14: 937.
|
| [10] |
Thompson S T, Wilson A R, Zelenay P, Myers D J, More K L, Neyerlin K C, Papageorgopoulos D. Solid State Ionics, 2018, 319: 68.
|
| [11] |
Wu G, Zelenay P. Accounts of Chemical Research, 2013, 46: 1878.
|
| [12] |
Banham D, Ye S Y. ACS Energy Letters, 2017, 2: 629.
|
| [13] |
Wipke K., Sprik S., Kurtz J., Ramsden T., Ainscough C., Saur G., http://www.hydrogen.energy.gov/pdfs/review11/tv001_wipke_2011_o.pdf
|
| [14] |
Chung D. Y., Yoo J. M., Sung Y. E., Advanced Materials, 2018, 1704123
|
| [15] |
Wang X Q, Li Z J, Qu Y T, Yuan T W, Wang W Y, Wu Y E, Li Y D. Chem., 2019, 5: 1486.
|
| [16] |
Perez-Alonso F J, Mccarthy D N, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens I E L, Nielsen J H, Chorkendorff I. Angewandte Chemie International Edition, 2012, 124: 4719.
|
| [17] |
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Accounts of Chemical Research, 2013, 46: 1740.
|
| [18] |
Long B, Tang Y, Li J. Nano Research, 201, 9: 3868.
|
| [19] |
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angewandte Chemie International Edition, 2017, 56: 13944.
|
| [20] |
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2: 1242.
|
| [21] |
Guo J J, Juan H J, Liu Y, Wu W J, Xiu W G. Small Methods, 2019, 3: 1900159.
|
| [22] |
Sun T T, Xu L B, Wang D S, Li Y D. Nano Research, 2019, 12: 2067.
|
| [23] |
Zhao C, Yu H Z, Wang J, Che W, Li Z J, Yao T, Yan W S, Chen M, Yang J, Wei S Q. Materials Chemistry Frontiers, 2018, 2: 1317.
|
| [24] |
Wang Z M, Gu L, Song L, Wang H, Yu R. Materials Chemistry Frontiers, 2018, 2: 1024.
|
| [25] |
Han B X. Chem. Res. Chinese Universities, 2019, 35(1): 6.
|
| [26] |
Zhu C Z, Shi Q R, Xu B Z, Fu S F, Lin Y H. Advanced Energy Materials, 2018, 8: 1801956.
|
| [27] |
Zheng Y, Jiao Y, Zhu Y H, Cai Q R, Vasileff A, Li L H, Han Y, Chen Y, Qiao S-Z. Journal of the American Chemical Society, 2017, 139: 3336.
|
| [28] |
Fei H L, Dong J C, Arellano-Jiménez M J, Ye G L, Kim N D, Samuel E L G, Peng Z W, Zhu Z, Qin F, Bao J M. Nature Communications, 2015, 6: 8668.
|
| [29] |
Yang H. Z., Wang X., AdvancedMaterials, 2018, 1800743
|
| [30] |
Liang Z B, Qu C, Xia D G, Zou R Q, Xu Q. Angewandte Chemie, 2018, 57: 9604.
|
| [31] |
Wang P T, Shao Q, Huang X Q. Joule, 2018, 2: 2514.
|
| [32] |
Liu J, Jiao M G, Mei B B, Tong Y X, Li Y P, Ruan M B, Song P, Sun G Q, Jiang L H, Wang Y. Angewandte Chemie International Edition, 2019, 131: 1175.
|
| [33] |
Xiao M L, Zhu J B, Li G R, Li N, Li S, Cano Z P, Ma L, Cui P X, Pan X, Jiang G P. Angewandte Chemie International Edition, 2019, 58: 1163.
|
| [34] |
Shui J L, Wang M, Du F, Dai L M. Science Advances, 2015, 1: 1400129.
|
| [35] |
Gu W L, Hu L Y, Li J, Wang E K. Electroanalysis, 2018, 30: 1217.
|
| [36] |
Peng H L, Liu F F, Liu X J, Liao S J, You C H, Tian X L, Nan H X, Luo F, Song H Y, Fu Z Y. ACS Catalysis, 2014, 4: 3797.
|
| [37] |
Masa J, Zhao A Q, Wei X, Muhler M, Schuhmann W. Electrochimica Acta, 2014, 128: 271.
|
| [38] |
Zhang H G, Hwang S, Wang M Y, Feng Z X, Karakalos S, Luo L L, Qiao Z, Xie X H, Wang C M, Su D. Journal of the American Chemical Society, 2017, 139: 14143.
|
| [39] |
Ren H, Wang Y, Yang Y, Tang X, Peng Y Q X, Li, Lu J T, Abrafla H D, Lin Z. ACS Catalysis, 2017, 7: 6485.
|
| [40] |
Liu Y, Cheng D J, Xu H X, Zeng X F, Wan X, Shui J L, Xiang Z H, Cao D P. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 6626.
|
| [41] |
Liu Q T, Liu X F, Zheng L R, Shui J L. Angewandte Chemie InternationalEdition, 2018, 57: 1204.
|
| [42] |
Wan X, Liu X F, Li Y C, Yu R H, Zheng L R, Yan W S, Wang H, Xu M, Shui J L. Nature Catalysis, 2019, 2: 259.
|
| [43] |
Kramm U I, Lefèvre M, Larouche N, Schmeisser D, Dodelet J P. Journal of the American Chemical Society, 2014, 136: 978.
|
| [44] |
Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L, Zelenay P. Science, 2017, 357: 479.
|
| [45] |
Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J P. Nature Communications, 2011, 2: 416.
|
| [46] |
Shui J L, Chen C, Grabstanowicz L, Zhao D, Liu D-J. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 10629.
|
| [47] |
Wang Y C, Lai Y J, Song L, Zhou Z Y, Liu J G, Wang Q, Yang X D, Chen C, Shi W, Zheng Y P. Angewandte Chemie International Edition, 2015, 54: 9907.
|
| [48] |
Fu X G, Zamani P, Choi J Y, Hassan F M, Chen Z W. Advanced Materials, 201, 29: 1604456.
|
| [49] |
Walling C. Accounts of Chemical Research, 1975, 8: 125.
|
| [50] |
Kang S F, Chang H M. Water Science & Technology, 1997, 36: 215.
|
| [51] |
Wang X X, Cullen D A, Pan Y T, Hwang S, Wang M Y, Feng Z X, Wang J Y, Engelhard M H, Zhang H G, He Y H, Shao Y Y, Su D, More K L, Wu G. Advanced Materials, 2018, 30: 1706758.
|
| [52] |
Xiang Z H, Xue Y H, Cao D P, Huang L, Chen J-F, Dai L M. Angew Chem. Int. Ed. Engl., 2014, 126: 2465.
|
| [53] |
Su J W, Ge R X, Dong Y, Hao F, Chen L. Journal of Materials Chemistry A, 2018, 6: 14025.
|
| [54] |
He Y H, Hwang S, Cullen D A, Uddin M A, Langhorst L, Li B Y, Karakalos S, Kropf A J, Wegener E C, Sokolowski J, Chen M J, Myers D, Su D, More K L, Wang G F, Litster S, Wu G. Energy & Environmental Science, 2019, 12: 250.
|
| [55] |
Li J Z, Chen M J, Cullen D A, Hwang S, Wang M Y, Li B Y, Liu K X, Karakalos S, Lucero M, Zhang H G, Lei C, Xu H, Sterbinsky G E, Feng Z X, Su D, More K L, Wang G F, Wang Z B, Wu G. Nature Catalysis, 2018, 1: 935.
|
| [56] |
Wang X L, Li Q, Pan H Y, Lin Y, Ke Y J, Sheng H Y, Swihart M T, Wu G. Nanoscale, 2015, 7: 20290.
|
| [57] |
Gupta S, Zhao S, Wang X X, Hwang S, Karakalos S, Devaguptapu S, Mukherjee S, Su D, Xu H, Wu G. ACS Catalysis, 2017, 7: 83836.
|
| [58] |
Chao T T, Luo X, Chen W X, Jiang B, Ge J J, Lin Y, Wu G, Wang X Q, Hu Y M, Zhuang Z B, Wu Y E, Hong X, Li Y D. Angewandte Chemie, 2017, 56: 16047.
|
| [59] |
Wei L, Karahan H E, Zhai S L, Liu H W, Chen X C, Zhou Z, Lei Y J, Liu Z W, Chen Y. Advanced Materials, 2017, 29: 1701410.
|
| [60] |
Duan J J, Chen S, Zhao C. Nature Communications, 2017, 8: 15341.
|
| [61] |
Zhao S L, Wang Y, Dong J C, He C-T, Yin H J, An P F, Zhao K, Zhang X F, Gao C, Zhang L J, Lv J W, Wang J X, Zhang J Q, Khattak A M, Khan N A, Wei Z X, Zhang J, Liu S Q, Zhao H J, Tang Z Y. Nature Energy, 201, 1: 16184.
|
| [62] |
Wang J, Huang Z Q, Liu W, Chang C R, Tang H L, Li Z J, Chen W X, Jia C J, Yao T, Wei S Q, Wu Y E, Li Y D. Journal of the American Chemical Society, 2017, 139: 17281.
|
| [63] |
Tian J, Morozan A, Sougrati M T, Lefèvre M, Chenitz R, Dodelet J P, Jones D, Jaouen F. Angewandte Chemie International Edition, 2013, 52: 6867.
|
| [64] |
Shen H J, Thomas T, Rasaki S A, Saad A, Hu C, Wang J C, Yang M H. Electrochemical Energy Reviews, 2019, 2: 252.
|
| [65] |
Chong L N, Wen J G, Kubal J, Sen F G, Zou J X, Greeley J, Chan M, Barkholtz H, Ding W J, Liu D-J. Science, 2018, 362: 1276.
|