La and Sr Composite Oxides-modified Graphite Felt for Aqueous Organic Redox Flow Batteries

Hui Wang , Dan Li , Liuping Chen , Hongjing Han

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1255 -1260.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1255 -1260. DOI: 10.1007/s40242-020-0108-0
Article

La and Sr Composite Oxides-modified Graphite Felt for Aqueous Organic Redox Flow Batteries

Author information +
History +
PDF

Abstract

In this study, aqueous organic redox flow batteries(AORFBs) with NaCl as supporting electrolyte were investigated. In AORFBs, the chlorine evolution reaction should be retarded, not the hydrogen evolution reaction. To enhance the catalytic activity of the graphite felt(GF) electrode, the metal oxides were proposed to decorate on the GF surface. Among the loading oxides, significant enhancement of the mass transfer and reaction activity was obtained by the presence of LaSrO x nanoparticles. X-Ray photoelectron spectroscopy and contact angle measurements revealed that the content of oxygen-containing groups and the hydrophilicity were remarkably increased. After the electrode assembled in the battery, the LaSrO x/GF electrode presented huge enhancement of the battery performance, obviously increasing in the battery capacity and efficiency. At a current of 50 Am/cm2, the energy efficiency(EE) of the battery increased from 54.76% to 61.37% by the LaSrO x/GF electrode. Furthermore, the cyclability of the system tested that no obviously fading was observed after 100 cycles, signifying the excellent stability of the LaSrO x/GF electrode.

Keywords

Redox flow battery / Organic active molecule / Graphite felt / La and Sr composite oxide

Cite this article

Download citation ▾
Hui Wang, Dan Li, Liuping Chen, Hongjing Han. La and Sr Composite Oxides-modified Graphite Felt for Aqueous Organic Redox Flow Batteries. Chemical Research in Chinese Universities, 2020, 36(6): 1255-1260 DOI:10.1007/s40242-020-0108-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim K J, Park M. J. Mater. Chem. A, 2015, 33: 16913.

[2]

Skyllas-Kazacos M, Robins R G, Fane A G. J. Electrochem. Soc., 198, 133: 1057.

[3]

Kyle L, James W, Faraz A, Ryan C, Syeda T. J. Energy Storage, 2019, 26: 100844.

[4]

Soloveichik G L. Chem. Rev., 2015, 115: 11533.

[5]

Prifti H, Parasuraman A, Winardi S, Lim T M, Skyllas-Kazacos M. Membrane, 2012, 2: 275.

[6]

Kristina W, Emil D, Denes K, Anders B. Sci. Rep., 201, 6: 39101.

[7]

Ding Y, Zhang C, Zhang L, Zhou Y, Yu G. Chem. Soc. Rev., 2018, 47: 69.

[8]

Luo J, Hu B, Hu M, Zhao Y, Liu T L. ACS Energy Lett., 2019, 4: 2220.

[9]

Winsberg J, Hagemann T, Janoschka T, Hager M D, Schubert U S. Angew Chem. Int. Ed., 2017, 56: 686.

[10]

Janoschka T, Martin N, Martin U, Hiller H, Hager M D, Schubert U S. Nature, 2015, 527: 78.

[11]

Eugene S B, Diana D P, Rebecca L, Gracia K T X, Roy G G, Michael J A. ACS Energy Lett., 2017, 2: 639.

[12]

Hou J, Liu Y, Liu Y, Wu L, Yang Z, Xu T. Chem. Engineer. Sci., 2019, 201: 167.

[13]

Liu T B, Wei X, Nie Z, Sprenkle V, Wang W. Adv. Energy Mater., 201, 6: 1501449.

[14]

Janoschka T, Friebe C, Martin D H, Norbert M, Ulrich S S. ChemistryOpen, 2017, 6: 216.

[15]

Tobias J, Norbert M, Martin D H, Ulrich S S. Angew Chem. Int. Ed., 201, 55: 14427.

[16]

Hu B, Tang Y, Luo J, Grove G, Guo Y, Liu T L. Chem. Commun., 2018, 54: 6871.

[17]

Luo J, Hu B, Debruler C, Liu T. Angew. Chem. Int. Ed., 2018, 57: 231.

[18]

Gao F, Zhang Y, Huang C, Zhang W. ACS Omega, 2019, 4: 13721.

[19]

Youn C, Song S A, Kim K, Woo J Y, Chang Y, Lim S. J. Mater. Chem. Physics, 2019, 237: 121873.

[20]

Mathieu E, Jose F V, Ivan V, Claire G, Liang L, Michel P, Rolf H, Alain W. Electrochimica Acta, 2019, 313: 131.

[21]

Kabtamu D M, Chen J Y, Chang Y C. J. Mater. Chem. A, 201, 4: 11472.

[22]

Zhou H, Xi J, Li Z, Zhang Z, Yu L, Liu L, Qiu X, Chen L. RSC Adv., 2014, 4: 61912.

[23]

Javier V, Cristina F, Cristian F, Edgar V, Andres P, Teresa A, Joan R M. ChemSusChem, 2017, 10: 2089.

[24]

Xiao Q, Wang L, Li D, Jing W. Chinese J. Inorg. Chem., 2019, 35: 1678.

[25]

Na Z., Yao R., Yan Q., Sun X., Huang G., Research, 2019, DOI: https://doi.org/10.34133/2019/3616178

[26]

Na Z, Wang X, Yin D, Wang L. Nanoscale, 2018, 10: 10705.

[27]

Anteneh W B, Daniel M K, Yu C C, Guan C C. ACS Sustainable Chem. Eng., 2018, 6: 3019.

[28]

Kim K J, Park M S, Kim J H, Hwang U, Lee N J, Jeong G, Kim Y J. Chem. Commun., 2012, 48: 5455.

[29]

Thu Pham H T, Jo C, Lee J, Kwon Y. RSC Adv., 201, 6: 17574.

[30]

Flox C, Skoumal M, Rubio-Garcia J, Andreu T, Morante J R. Appl. Energy, 2013, 109: 344.

[31]

Kabtamu M, Chang C, Lin Y, Bayeh W, Chen Y, Wondimu H. Sustainable Energy Fuels, 2017, 1: 2091.

[32]

Luis E, David R, Zimin N, Ashleigh M S, Manjula I N. Chem-SusChem, 201, 9: 1455.

[33]

Kabtamu D M, Chen J Y, Chang Y C, Wang C H. J. Power Sources, 2017, 341: 270.

[34]

Sun B, Skyllas-Kazacos M. Electrochim. Acta, 1992, 37: 1253.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/