Common Pitfalls of Reporting Electrocatalysts for Water Splitting

Yuan Wang , Hamidreza Arandiyan , Kamran Dastafkan , Yibing Li , Chuan Zhao

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 360 -365.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 360 -365. DOI: 10.1007/s40242-020-0107-1
Review

Common Pitfalls of Reporting Electrocatalysts for Water Splitting

Author information +
History +
PDF

Abstract

Rigorous assessment of heterogeneous electrocatalysts for electrochemical water splitting has been a critical issue mainly due to insufficient standard protocols to measure and report experimental data. In this perspective, we highlight some common pitfalls when measuring and reporting electrocatalytic data, which should be avoided to ensure the accuracy and reproducibility and to advance the water splitting field. We advocate to prevent the introduction of artefacts from the counter and reference electrodes, as well as the impurities in the electrolyte when conducting electrocatalyst activity measurements. In addition, we encourage the use of the electrochemically active surface area(ECSA)-normalized current densities to represent the intrinsic activity of the reported catalysts for a better comparison with previously known materials. Suitable ECSA measurement methods should be employed based on the nature of catalysts. Recommendations made in this perspective will hopefully assist in identifying advanced catalysts for water splitting research.

Keywords

Electrocatalyst / Water splitting / Electrochemical active surface area / Benchmarking catalyst / Energy conversion and storage

Cite this article

Download citation ▾
Yuan Wang, Hamidreza Arandiyan, Kamran Dastafkan, Yibing Li, Chuan Zhao. Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chemical Research in Chinese Universities, 2020, 36(3): 360-365 DOI:10.1007/s40242-020-0107-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu L, Corma A. Chem. Rev., 2018, 118: 4981.

[2]

Kibsgaard J, Chorkendorff I. Nature Energy, 2019, 4: 430.

[3]

Shi Q, Zhu C, Du D, Lin Y. Chem. Soc. Rev., 2019, 48: 3181.

[4]

Roger I, Shipman M A, Symes M D. Nature Reviews Chemistry, 2017, 1: 0003.

[5]

You B, Tang M T, Tsai C, Abild-Pedersen F, Zheng X, Li H. Adv. Mater., 2019, 31: 1807001.

[6]

Wang X, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Adv. Mater., 2019, 31: 1803625.

[7]

Shan J, Ling T, Davey K, Zheng Y, Qiao S Z. Adv. Mater., 2019, 31: 1900510.

[8]

Bo X, Dastafkan K, Zhao C. ChemPhysChem, 2019, 20: 2936.

[9]

Wang Y, Arandiyan H, Chen X, Zhao T, Bo X, Su Z, Zhao C. J. Phys. Chem. C, 2020, 124: 9971.

[10]

Suryanto B H R, Wang Y, Hocking R K, Adamson W, Zhao C. Nature Communications, 2019, 10: 5599.

[11]

Bo X, Li Y, Chen X, Zhao C. J. Power Sources, 2018, 402: 381.

[12]

Wu S, Mo J, Zeng Y, Wang Y, Rawal A, Scott J, Su Z, Ren W, Chen S, Wang K, Chen W, Zhang Y, Zhao C, Chen X. Small, 2019, 16: 1903397.

[13]

Sun Q, Zhou M, Shen Y, Wang L, Ma Y, Li Y, Bo X, Wang Z, Zhao C. J. Catal., 2019, 373: 180.

[14]

Wang L, Li Y, Sun Q, Qiang Q, Shen Y, Ma Y, Wang Z, Zhao C. ChemCatChem, 2019, 11: 2011.

[15]

Shen Y, Dastafkan K, Sun Q, Wang L, Ma Y, Wang Z, Zhao C. Int. J. Hydrogen Energy, 2019, 44: 3658.

[16]

Li Y, Tan X, Chen S, Bo X, Ren H, Smith S C, Zhao C. Angew. Chem. Int. Ed., 2019, 58: 461.

[17]

Qiu C, He S, Wang Y, Wang Q, Zhao C. Chemistry: A European Journal, 2020, 26: 4120.

[18]

Zhao T, Wang Y, Chen X, Li Y, Su Z, Zhao C. ACS Sustainable Chemistry & Engineering, 2020, 8: 4863.

[19]

Qiu C, Cai F, Wang Y, Liu Y, Wang Q, Zhao C. J. Colloid Interface Sci., 2019, 565: 351.

[20]

Liu G, Yao R, Zhao Y, Wang M, Li N, Li Y, Bo X, Li J, Zhao C. Nanoscale, 2018, 10: 3997.

[21]

Lei Z, Bai J, Li Y, Wang Z, Zhao C. ACS Appl. Mater. Interfaces, 2017, 9: 35837.

[22]

Sun Q, Dong Y, Wang Z, Yin S, Zhao C. Small, 2018, 14: 1704137.

[23]

Voiry D, Chhowalla M, Gogotsi Y, Kotov N A, Li Y, Penner R M, Schaak R E, Weiss P S. ACS Nano, 2018, 12: 9635.

[24]

Adamson W., Bo X., Li Y., Suryanto B. H. R., Chen X., Zhao C., Catal. Today, 2019, DOI: https://doi.org/10.1016/j.cattod.2019.01.060

[25]

Dastafkan K, Li Y, Zeng Y, Han L, Zhao C. Journal of Materials Chemistry A, 2019, 7: 15252.

[26]

Topalov A A, Cherevko S, Zeradjanin A R, Meier J C, Katsounaros I, Mayrhofer K J J. Chem. Sci., 2014, 5: 631.

[27]

Weremfo A, Fong S T C, Khan A, Hibbert D B, Zhao C. Electrochim. Acta, 2017, 231: 20.

[28]

Lu X, Zhao C. PCCP, 2013, 15: 20005.

[29]

Smith T. J., Stevenson K. J.; Eds.: Eoski C. G., Handbook of Electrochemistry, Elsevier, Amsterdam, 2007, 73

[30]

Kolli R, Kaivosoja E, Levon K. Electroanalysis, 2015, 27: 1636.

[31]

Liu G, Zhao Y, Yao R, Li N, Wang M, Ren H, Li J, Zhao C. Chem. Eng. J., 2019, 355: 49.

[32]

Duan J, Chen S, Li Y, Zhao C. ACS Applied Energy Materials, 2018, 1: 6368.

[33]

Guo Y, Guo D, Ye F, Wang K, Shi Z, Chen X, Zhao C. ACS Sustainable Chemistry & Engineering, 2018, 6: 11884.

[34]

Yun M H, Yeon J W, Hwang J, Hong C S, Song K. J. Appl. Electrochem., 2009, 39: 2587.

[35]

Wei C, Rao R R, Peng J, Huang B, Stephens I E L, Risch M, Xu Z J, Shao-Horn Y. Adv. Mater., 2019, 31: 1806296.

[36]

Zhu J, Xu D, Wang C, Qian W, Guo J, Yan F. Carbon, 2017, 115: 1.

[37]

Montoya J H, Seitz L C, Chakthranont P, Vojvodic A, Jaramillo T F, Nørskov J K. Nature Materials, 2017, 16: 70.

[38]

Wei C, Sun S, Mandler D, Wang X, Qiao S Z, Xu Z J. Chem. Soc. Rev., 2019, 48: 2518.

[39]

Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110: 6446.

[40]

Gorlin Y, Jaramillo T F. J. Am. Chem. Soc., 2010, 132: 13612.

[41]

van Deelen T W, Hernández Mejía C, de Jong K P. Nature Catalysis, 2019, 2: 955.

[42]

Ye R-P, Ding J, Gong W, Argyle M D, Zhong Q, Wang Y, Russell C K, Xu Z, Russell A G, Li Q, Fan M, Yao Y G. Nature Communications, 2019, 10: 5698.

[43]

Wang Y J, Wilkinson D P, Zhang J. Chem. Rev., 2011, 111: 7625.

[44]

Debe M K. Nature, 2012, 486: 43.

[45]

Sonkar P K, Prakash K, Yadav M, Ganesan V, Sankar M, Gupta R, Yadav D K. Journal of Materials Chemistry A, 2017, 5: 6263.

[46]

Lu G, Yang H, Zhu Y, Huggins T, Ren Z J, Liu Z, Zhang W. Journal of Materials Chemistry A, 2015, 3: 4954.

[47]

Gomez B J, Salvarezza R C, Arvia A J. Electrochim. Acta, 1988, 33: 1431.

[48]

Sheng W, Myint M, Chen J G, Yan Y. Energy Environ. Sci., 2013, 6: 1509.

[49]

Clark E L, Resasco J, Landers A, Lin J, Chung L T, Walton A, Hahn C, Jaramillo T F, Bell A T. ACS Catal., 2018, 8: 6560.

[50]

McCrory C C L, Jung S, Peters J C, Jaramillo T F. J. Am. Chem. Soc., 2013, 135: 16977.

[51]

Li G, Anderson L, Chen Y, Pan M, Abel Chuang P Y. Sustainable Energy & Fuels, 2018, 2: 237.

[52]

Anantharaj S, Ede S R, Karthick K, Sam S S, Sangeetha K, Karthik P E, Kundu S. Energy Environ. Sci., 2018, 11: 744.

[53]

Jung S, McCrory C C L, Ferrer I M, Peters J C, Jaramillo T F. Journal of Materials Chemistry A, 201, 4: 3068.

[54]

Gomez V A, Omanovic S. Electrochim. Acta, 2018, 262: 115.

[55]

Gomez V A, Choi K, Omanovic S. Int. J. Hydrogen Energy, 2018, 43: 12917.

[56]

Duan J, Chen S, Zhao C. Nature Communications, 2017, 8: 15341.

[57]

Zhao S, Wang Y, Dong J, He C T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak A M, Khan N A, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nature Energy, 201, 1: 16184.

[58]

Howarth A J, Liu Y, Li P, Li Z, Wang T C, Hupp J T, Farha O K. Nature Reviews Materials, 201, 1: 15018.

[59]

Ding M, Chen J, Jiang M, Zhang X, Wang G. Journal of Materials Chemistry A, 2019, 7: 14163.

[60]

Anantharaj S, Ede S R, Sakthikumar K, Karthick K, Mishra S, Kundu S. ACS Catal., 201, 6: 8069.

[61]

Klaus S, Cai Y, Louie M W, Trotochaud L, Bell A T. J. Phys. Chem. C, 2015, 119: 7243.

[62]

Trotochaud L, Young S L, Ranney J K, Boettcher S W. J. Am. Chem. Soc., 2014, 136: 6744.

[63]

Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. ACS Energy Letters, 2018, 3: 1515.

[64]

Lu X, Zhao C. Nature Communications, 2015, 6: 6616.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/