Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics

Yiyi Zhu , Lei Shu , Zhiyong Fan

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 366 -376.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 366 -376. DOI: 10.1007/s40242-020-0105-3
Review

Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics

Author information +
History +
PDF

Abstract

The electricity consumption of buildings is tremendous; moreover, a huge amount of electricity is lost during distribution. Taking away this consumption can significantly reduce energy demand and greenhouse effect gas emission. One of the low-cost and renewable solutions to this issue is to install photovoltaic panels on the buildings themselves, namely, building-integrated photovoltaics(BIPVs). Using this technology, power generation roofs, windows, and facades can harvest solar radiation and convert to electricity for building power consumption. Semi-transparent perovskite solar cells(ST-PSCs) have attracted tremendous attention for the power generation windows, due to the excellent photoelectric properties, versatile fabrication methods, bandgap tunability, and flexibility. Here, an overview is provided on the recent progress of ST-PSCs for BIPV, which mainly focuses on the control of perovskite morphology, optical engineering for an efficient and semi-transparent ST-PSC. We also summarize recent development on various transparent electrodes and present prospects and challenges for the commercialization of ST-PSCs.

Keywords

Building-integrated photovoltaic / Semi-transparent solar cell / Perovskites solar cell

Cite this article

Download citation ▾
Yiyi Zhu, Lei Shu, Zhiyong Fan. Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics. Chemical Research in Chinese Universities, 2020, 36(3): 366-376 DOI:10.1007/s40242-020-0105-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

2019-Snapshot of Global Photovoltaic Markets, https://www.researchgate.net/publication/332606669

[2]

File M., Commercial Buildings Energy Consumption Survey (CBECS), https://www.eia.gov/consumption/commercial/data/2012/

[3]

Werner J R M, Barraud L, Walter A, Brauninger M, Sahli F, Sacchetto D, Tétreault N, Paviet-Salomon B, Moon S J, Allebé C. ACS Energy Letters, 201, 7(2): 474.

[4]

Gagnon P, Margolis R, Phillips C. Rooftop Photovoltaic Technical Potential in the United States, 2019, Golden: National Renewable Energy Laboratory-Data(NREL-DATA)

[5]

US Energy Information Adminstration 2015 Residential Energy Consumption Survey(RECS) Data, 2015.

[6]

Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice C R, Cimaroli A J, Guan L, Ellingson R J, Zhu K. Nature Energy, 2017, 2(4): 17018.

[7]

Zhu Y, Poddar S, Shu L, Fu Y, Fan Z. Advanced Materials Interfaces, 2020 2000118.

[8]

National Renewable Energy Laboratory Best Research Cell Efficiencies Chart, 2019.

[9]

Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y. Advanced Functional Materials, 2019, 29(47): 1808843.

[10]

Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M. Nature Communications, 2017, 8: 15684.

[11]

McMeekin D R, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B. Science, 201, 357(6269): 151.

[12]

Noh J H, Im S H, Heo J H, Mandai T N, Seok S I. Nano Letters, 2013, 73(4): 1764.

[13]

Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energy & Environmental Science, 2014, 7(3): 982.

[14]

Judd D B. Contributions to Color Science, 1979

[15]

Traverse C J, Pandey R, Barr M C, Lunt R R. Nature Energy, 2017, 2(11): 849.

[16]

Drolet N. Organic Photovoltaic: Efficiency and Lifetime Challenges for Commercial Viability, 2012 MRS Spring Meeting & Exhibit, 2012.

[17]

Poynton C. Digital Video and HD: Algorithms and Interfaces, 2012, Waltham MA: Elsevier

[18]

Deng Y, Wang Q, Yuan Y, Huang J. Materials Horizons, 2015, 2(6): 578.

[19]

Zhang W, Anaya M, Lozano G, Calvo M E, Johnston M B, Miguez H, Snaith H J. Nano Letters, 2015, 75(3): 1698.

[20]

Lee K T, Jang J Y, Zhang J, Yang S M, Park S, Park H J. Scientific Reports, 2017, 7(1): 1.

[21]

Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E. ACS Applied Energy Materials, 2018, 2(1): 764.

[22]

Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. The Journal of Physical Chemistry Letters, 201, 7(5): 746.

[23]

McMeekin D. P., Sadoughi G., Rehman W., Eperon G. E., Saliba M., Hörantner M. T., Haghighirad A., Sakai N., Korte L., Rech B. J. S., 2016, 357 (6269), 151

[24]

Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G. Advanced Energy Materials, 2015, 5(20): 1501310.

[25]

You P, Liu Z, Tai Q, Liu S, Yan F. Advanced Materials, 2015, 27(24): 3632.

[26]

Ono L K, Wang S, Kato Y, Raga S R, Qi Y. Energy & Environmental Science, 2014, 7(12): 3989.

[27]

Jung J W, Chueh C C, Jen A K Y. Advanced Energy Materials, 2015, 5(17): 1500486.

[28]

Guo F, Azimi H, Hou Y, Przybilla T, Hu M, Bronnbauer C, Langner S, Spiecker E, Forberich K, Brabec C J. Nanoscale, 2015, 7(5): 1642.

[29]

Heo J H, Han H J, Lee M, Song M, Kim D H, Im S H. Energy & Environmental Science, 2015, 8(10): 2922.

[30]

Quiroz C O R, Levchuk L, Bronnbauer C, Salvador M, Forberich K, Heurmiller T, Hou Y, Schweizer P, Spiecker E, Brabec C J. Journal of Materials Chemistry A, 2015, 3(47): 24071.

[31]

You P., Liu Z., Tai Q., Liu S., Yan F. J. A. M., 2015, 27(24), 3632

[32]

Kim Y C, Jeon N J, Noh J H, Yang W S, Seo J, Yun J S, Ho-Baillie A, Huang S, Green M A, Seidel J. Advanced Energy Materials, 201, 6(4): 1502104.

[33]

Kim G M, Tatsuma T. The Journal of Physical Chemistry C, 201, 720(51): 28933.

[34]

Kam M, Zhang Q, Zhang D, Fan Z. Scientific Reports, 2019, 9(1): 1.

[35]

Kam M, Zhu Y, Zhang D, Gu L, Chen J, Fan Z. Solar RRL, 2019, 3(7): 1900050.

[36]

Tavakoli M M, Lin Q, Leung S F, Lui G C, Lu H, Li L, Xiang B, Fan Z. Nanoscale, 201, 8(1): 4276.

[37]

Tavakoli M M, Simchi A, Mo X, Fan Z. Materials Chemistry Frontiers, 2017, 7(8): 1520.

[38]

Roldán-Carmona C, Malinkiewicz O, Betancur R, Longo G, Momblona C, Jaramillo F, Camacho L, Bolink H J J E. Science E., 2014, 7(9): 2968.

[39]

Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y. Advanced Materials, 2018, 30(21): 1800855.

[40]

Eperon G E, Burlakov V M, Goriely A, Snaith H J. ACS Nano, 2013, 8(1): 591.

[41]

Eperon G E, Bryant D, Troughton J, Stranks S D, Johnston M B, Watson T, Worsley D A, Snaith H J. The Journal of Physical Chemistry Letters, 2015, 6(1): 129.

[42]

Delia Gaspera E, Peng Y, Hou Q, Spiccia L, Bach U, Jasieniak J J, Cheng Y B. Nano Energy, 2015, 73: 249.

[43]

Hörantner M, Zhang W, Saliba M, Wojciechowski K, Snaith H. Energy & Environmental Science, 2015, 8(1): 2041.

[44]

Zhang L, Hörantner M T, Zhang W, Yan Q, Snaith H J. Solar Energy Materials and Solar Cells, 2017, 760: 193.

[45]

Retsch M, Zhou Z, Rivera S, Kappl M, Zhao X S, Jonas U, Li Q. Macromolecular Chemistry and Physics, 2009, 270(3/4): 230.

[46]

Plettl A, Enderle F, Saitner M, Manzke A, Pfahler C, Wiedemann S, Ziemann P. Advanced Functional Materials, 2009, 79(20): 3279.

[47]

Kim G M, Tatsuma T. Scientific Reports, 2017, 7(1): 10699.

[48]

Zhang D, Gu L, Zhang Q, Lin Y, Lien D H, Kam M, Poddar S, Garnett E C, Javey A, Fan Z. Nano Letters, 2019, 79(5): 2850.

[49]

Gu L, Zhang D, Kam M, Zhang Q, Poddar S, Fu Y, Mo X, Fan Z. Nanoscale, 2018, 70(32): 15164.

[50]

Zhang Q, Zhang D, Gu L, Tsui K H, Poddar S, Fu Y, Shu L. Fan Z., ACS Nemo, 2020.

[51]

Zhang Q, Tavakoli M M, Gu L, Zhang D, Tang L, Gao Y, Guo J, Lin Y, Leung S F, Poddar S. Nature Communications, 2019, 70(1): 1.

[52]

Kwon H C, Kim A, Lee H, Lee D, Jeong S J, Moon J. Adv. Energy Mater., 201, 6(20): 1601055.

[53]

Kawawaki T, Takahashi Y, Tatsuma T. Nanoscale, 2011, 3(7): 2865.

[54]

Stuart H R, Hall D G. Applied Physics Letters, 1998, 73(26): 3815.

[55]

Stenzel O, Stendal A, Voigtsberger K, Von Borczyskowski C. Solar Energy Materials and Solar Cells, 1995, 37(3/4): 337.

[56]

Wei Z, Smith B, De Rossi F, Searle J R, Worsley D A, Watson T M. Journal of Materials Chemistry C, 2019, 7(35): 10981.

[57]

Bryant D, Greenwood P, Troughton J, Wijdekop M, Carnie M, Davies M, Wojciechowski K, Snaith H J, Watson T, Worsley D. Advanced Materials, 2014, 26(44): 7499.

[58]

Fu F, Feurer T, Jäger T, Avancini E, Bissig B, Yoon S, Buecheler S, Tiwari A N. Nature Communications, 2015, 6(1): 1.

[59]

Werner J., Dubuis G., Walter A., Löper P., Moon S. J., Nicolay S., Morales-Masis M., De Wolf S., Niesen B., Ballif C. J. S. E. M., Cells S., 2015, 141, 407

[60]

Wahl T, Hanisch J, Meier S, Schultes M, Ahlswede E. Organic Electronics, 2018, 54: 48.

[61]

Chiang Y H, Peng C C, Chen Y H, Tung Y L, Tsai S Y, Chen P. Journal of Physics D: Applied Physics, 2018, 57(42): 424002.

[62]

Fu F, Pisoni S, Weiss T P, Feurer T, Wäckerlin A, Fuchs P, Nishiwaki S, Zortea L, Tiwari A N. Efficient and Stable Nir-Transparent Perovskite Solar Cells for Thin-Film Tandem Photovoltaics, 2017 115.

[63]

Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D. Advanced Materials, 201, 28(20): 3937.

[64]

Acik M, Darling S B. Journal of Materials Chemistry A, 201, 4(17): 6185.

[65]

Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Grätzel M. Energy & Environmental Science, 2015, 8(3): 956.

[66]

Hellstrom S L, Vosgueritchian M, Stoltenberg R M, Irfan I, Hammock M, Wang Y B, Jia C, Guo X, Gao Y, Bao Z. Nano Letters, 2012, 12(1): 3574.

[67]

Lang F, Gluba M A, Albrecht S, Rappich J R, Korte L, Rech B, Nickel N H. The Journal of Physical Chemistry Letters, 2015, 6(14): 2745.

[68]

Hecht D S, Hu L, Irvin G. Advanced Materials, 2011, 23(13): 1482.

[69]

Yu Z, Li L, Zhang Q, Hu W, Pei Q. Advanced Materials, 2011, 23(38): 4453.

[70]

Yang Y, Chen Q, Hsieh Y T, Song T B, Marco N D, Zhou H, Yang Y. ACS Nano, 2015, 9(7): 7714.

[71]

Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I. Nature Nanotechnology, 2010, 5(8): 574.

[72]

Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706.

[73]

Tan R K L, Reeves S P, Hashemi N, Thomas D G, Kavak E, Montazami R, Hashemi N N. Journal of Materials Chemistry A, 2017, 5(34): 17777.

[74]

Geim A K, Novoselov K S. Nanoscience and Technology: a Collection of Reviews from Nature Journals, 2010, Singapore: World Scientific 11.

[75]

Tran V D, Pammi S, Park B J, Han Y, Jeon C, Yoon S G. Nano Energy, 2019, 65: 104019.

[76]

Lee B H, Lee J H, Kahng Y H, Kim N, Kim Y J, Lee J, Lee T, Lee K. Advanced Functional Materials, 2014, 24(13): 1847.

[77]

Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H. ACS Nano, 2014, 8(1): 6797.

[78]

Bonaccorso F, Sun Z, Hasan T, Ferrari A. Nature Photonics, 2010, 4(9): 611.

[79]

F G D S H H P D C 2 [, H A, Y H, T P, M H, C B, S L, E S, K F, C. J B. Nanoscale, 2015, 7(5): 1642.

[80]

Lee H S, Kim Y W, Kim J E, Yoon S W, Kim T Y, Noh J S, Suh K S. Acta Materialia, 2015, 83: 84.

[81]

Zhao W, Gan X, Ke L, Guo L, Liu H. Solar Energy, 2020, 796: 1.

[82]

Han K, Xie M, Zhang L, Yan L, Wei J, Ji G, Luo Q, Lin J, Hao Y, Ma C Q. Solar Energy Materials and Solar Cells, 2018, 185: 399.

[83]

Kim S, Lee J L. Journal of Photonics for Energy, 2012, 2(1): 021215.

[84]

Xie X, Wu C, Sun S, Xu X, Xu W, Qin G, Xiao L. Energy Technology, 2019 1900868.

[85]

Delia Gaspera E, Peng Y, Hou Q, Spiccia L, Bach U, Jasieniak J J, Cheng Y B. Nano Energy, 2015, 73: 249.

[86]

Jung J W, Chueh C C, Jen A K Y. Adv. Energy Mater., 2015, 5(17): 1500486.

[87]

Upama M B, Mahmud M A, Yi H, Elumalai N K, Conibeer G, Wang D, Xu C, Uddin A. Organic Electronics, 2019, 65: 401.

[88]

Heo J H, Han J, Shin D H, Im S H. Materials Today Energy, 2017, 5: 280.

AI Summary AI Mindmap
PDF

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/