Ru Nanoparticles Supported on Co-Embedded N-Doped Carbon Nanotubes as Efficient Electrocatalysts for Hydrogen Evolution in Basic Media

Baolin Yan , Dapeng Liu , Xilan Feng , Mingzhe Shao , Yu Zhang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 425 -430.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 425 -430. DOI: 10.1007/s40242-020-0104-4
Article

Ru Nanoparticles Supported on Co-Embedded N-Doped Carbon Nanotubes as Efficient Electrocatalysts for Hydrogen Evolution in Basic Media

Author information +
History +
PDF

Abstract

A challenging but urgent task is to construct efficient and robust hydrogen evolution reaction(HER) electrocatalysts for practically feasible and sustainable hydrogen production through alkaline water electrolysis. Herein we report a simple and mild pyrolysis method to synthesize the efficient Ru nanoparticles(NPs) supported on Co-embedded N-doped carbon nanotubes(Ru/Co-NCNTs) catalyst for HER in basic media. The Ru/Co-NCNTs display remarkable performance with a low overpotential of only 35 mV at 10 mA/cm2, a small Tafel slope(36 mV/dec), and a high mass activity in 1 mol/L KOH, which is superior to commercial 20% Pt/C catalyst. This excellent performance is benefited from the enhanced conductivity of N-doped carbon nanotubes(NCNTs) and high intrinsic activity triggered by synergistic coupling between Ru NPs and Co-embedded N-doped carbon nanotubes(Co-NCNTs).

Keywords

Carbon nanotube / Ru nanoparticle / Hydrogen evolution reaction(HER) / Electrocatalyst

Cite this article

Download citation ▾
Baolin Yan, Dapeng Liu, Xilan Feng, Mingzhe Shao, Yu Zhang. Ru Nanoparticles Supported on Co-Embedded N-Doped Carbon Nanotubes as Efficient Electrocatalysts for Hydrogen Evolution in Basic Media. Chemical Research in Chinese Universities, 2020, 36(3): 425-430 DOI:10.1007/s40242-020-0104-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunn S. Int. J. Hydrogen Energy, 2002, 27: 235.

[2]

Li K, Li Y, Wang Y, Ge J, Liu C, Xing W. Energy Environ. Sci., 2018, 11: 1232.

[3]

Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Energy Convers. Manage., 2018, 165: 602.

[4]

Tee S Y, Win K Y, Teo W S, Koh L D, Liu S, Teng C P, Han M Y. Adv. Sci., 2017, 4: 1600337.

[5]

Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q. Nat. Commun., 2017, 8: 14969.

[6]

Zou X, Huang X, Goswami A, Silva R, Sathe B R, Mikmekova E, Asefa T. Angew. Chem. Int. Ed. Engl., 2014, 53: 4372.

[7]

Hu C, Zhang L, Gong J. Energy Environ. Sci., 2019, 12: 2620.

[8]

Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. Angew. Chem. Int. Ed., 2020, 59: 1718.

[9]

Chen Z, Duan X, Wei W, Wang S, Ni B J. J. Mater. Chem. A, 2019, 7: 14971.

[10]

Han S, Yun Q, Tu S, Zhu L, Cao W, Lu Q. J. Mater. Chem. A, 2019, 7: 24691.

[11]

Bae S Y, Mahmood J, Jeon I Y, Baek J B. Nanoscale Horiz., 2020, 5: 43.

[12]

Li F, Han G F, Noh H J, Ahmad I, Jeon I Y, Baek J B. Adv. Mater., 2018, 30: 1803676.

[13]

Yu M C, Le Y, Xiong W D L. Angew. Chem. Int. Ed., 201, 55: 5590.

[14]

Zhang J, Dai L. ACS Catal., 2015, 5: 7244.

[15]

Aijaz A, Masa J, Rösler C, Xia W, Muhler M. Angew. Chem. Int. Ed., 201, 55: 4087.

[16]

Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L. J. Am. Chem. Soc., 2017, 139: 8212.

[17]

Cheng Y, Cao J, Lv H, Zhao H, Zhao Y, Ji G. Inorg. Chem. Front., 2019, 6: 309.

[18]

Tabassum H, Mahmood A, Zhu B, Liang Z, Zhong R, Guo S, Zou R. Energy Environ. Sci., 2019, 12: 2924.

[19]

Jun Y S, Hong W H, Antonietti M, Thomas A. Adv. Mater., 2009, 21: 4270.

[20]

Drouet S, Creus J, Colliere V, Amiens C, Garcia-Anton J, Sala X, Philippot K. Chem. Commun.(Camb), 2017, 53: 11713.

[21]

Li P, Duan X, Wang S, Zheng L, Li Y, Duan H, Kuang Y, Sun X. Small, 2019, 15: 1904043.

[22]

Zheng Y, Jiao Y, Zhu Y, Li L H, Han Y, Chen Y, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 201, 138: 16174.

[23]

Barman B K, Das D, Nanda K K. Sustainable Energy Fuels, 2017, 1: 1028.

[24]

Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. Nat. Nanotechnol., 2017, 12: 441.

[25]

Wang J, Wei Z, Mao S, Li H, Wang Y. Energy Environ. Sci., 2018, 11: 800.

[26]

Yang J, Guo H, Chen S, Li Y, Cai C, Gao P, Wang L, Zhang Y, Sun R, Niu X, Wang Z. J. Mater. Chem. A, 2018, 6: 13859.

[27]

Yoon D, Lee J, Seo B, Kim B, Baik H, Joo S H, Lee K. Small, 2017, 13: 1700052.

[28]

Zhang X, Zhou F, Zhang S, Liang Y, Wang R. Adv. Sci., 2019, 6: 1900090.

[29]

Zhao Y, Mao G, Huang C, Cai P, Cheng G, Luo W. Inorg. Chem. Front., 2019, 6: 1382.

[30]

Zhong C, Zhou Q, Li S, Cao L, Li J, Shen Z, Ma H, Liu J, Lu M, Zhang H. J. Mater. Chem. A, 2019, 7: 2344.

[31]

Liu S, Liu Q, Lv Y, Chen B, Zhou Q, Wang L, Zheng Q, Che C, Chen C. Chem. Commun., 2017, 53: 13153.

[32]

Nong S, Dong W, Yin J, Dong B, Lu Y, Yuan X, Wang X, Bu K, Chen M, Jiang S. J. Am. Chem. Soc., 2018, 140: 5719.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/