Unveiling the Hidden Movements in the Shuttling of Rotaxanes

Yichang Guo , Haohao Fu , Xueguang Shao , Wensheng Cai

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 748 -754.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 748 -754. DOI: 10.1007/s40242-020-0092-4
Article

Unveiling the Hidden Movements in the Shuttling of Rotaxanes

Author information +
History +
PDF

Abstract

Movements in molecular machines are usually diverse and coupled, but some of them are often implicit and hard to be observed in experiments. In the present work, the two- or three-dimensional free-energy landscapes characterizing the coupled shuttling and other movements of a series of pH-triggered rotaxanes composed of a crown ether and an H-shaped axle with distinct number of phenyl rings(n=1–3) have been explored. The results show that although the calculated free-energy barriers against shuttling in the rotaxanes(n=2 and 3) change slightly, the movements coupled with the shuttling vary significantly with the axle length. At high pH, the shuttling in the rotaxane of n=2 is coupled with the isomerization of the wheel, while the shuttling in the one of n=3 is accompanied by both the isomerization and the rotation of the macrocycle. In addition, the crown ether underwent greater conformational change during shuttling at low pH compared to that at high pH. These results indicate that disentangling the coupled movements is important to reveal the underlying molecular mechanism of the shuttling.

Keywords

Rotaxane / Molecular machine / Molecular movement / Free-energy landscape

Cite this article

Download citation ▾
Yichang Guo, Haohao Fu, Xueguang Shao, Wensheng Cai. Unveiling the Hidden Movements in the Shuttling of Rotaxanes. Chemical Research in Chinese Universities, 2020, 36(5): 748-754 DOI:10.1007/s40242-020-0092-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang H, Shao X G, Chipot C, Cai W S. J. Phys. Chem. C, 2019, 123: 11304.

[2]

Yu G C, Yung B C, Zhou Z J, Mao Z W, Chen X Y. ACS Nano., 2018, 12: 7.

[3]

Cheng S C, Chen K J, Suzaki Y, Tsuchido Y, Kuo T S, Osakada K, Horie M. J. Am. Chem. Soc., 2018, 140: 90.

[4]

Wang X Q, Wang W, Li W J, Chen L J, Yao R, Yin G Q, Wang Y X, Zhang Y, Huang J L, Tan H W, Yu Y H, Li X P, Xu L, Yang B. Nat. Commun., 2018, 9: 1.

[5]

Garaudée S, Silvi S, Venturi M, Credi A, Flood A H, Stoddart J F. ChemPhysChem, 2005, 6: 2145.

[6]

Du S L, Fu H H, Shao X G, Chipot C, Cai W S. J. Phys. Chem. C., 2018, 122: 9229.

[7]

Bissell R A, Córdova E, Kaifer A E, Stoddart J F. Nature, 1994, 369: 133.

[8]

Wolf M, Ogawa A, Bechtold M, Vonesch M, Wytko J A, Oohora K, Campidelli S, Hayashi T, Guldi D M, Weiss J. Chem. Sci., 2019, 10: 3846.

[9]

Deutman A B C, Cantekin S, Elemans J A A W, Rowan A E, Nolte R J M. J. Am. Chem. Soc., 2014, 136: 9165.

[10]

Gunbas D D, Brouwer A M. J. Org. Chem., 2012, 77: 5724.

[11]

Yu C Y, Ma L S, He J J, Xiang J F, Deng X B, Wang Y, Chen X B, Jiang H. J. Am. Chem. Soc., 201, 138: 15849.

[12]

Wang S S, Shao X G, Cai W S. J. Phys. Chem. C, 2017, 121: 25547.

[13]

Gholami G, Zhu K L, Baggi G, Schott E, Zarate X, Loeb S J. Chem. Sci., 2017, 8: 7718.

[14]

Fu H H, Shao X G, Chipot C, Cai W S. J. Chem. Theory. Comput., 201, 12: 3506.

[15]

Fu H H, Shao X G, Chipot C, Cai W S. Acc. Chem. Res., 2019, 52: 3254.

[16]

Fu H H, Zhang H, Chen H C, Shao X G, Chipot C, Cai W S. J. Phys. Chem. Lett., 2018, 9: 4738.

[17]

Fiorin G, Klein M L, Hénin J. Mol. Phys., 2013, 111: 3345.

[18]

Ensing B, Laio A, Parrinello M, Klein M L. J. Phys. Chem. B, 2005, 109: 6676.

[19]

Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K. J. Comput. Chem., 2005, 26: 1781.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/