PDF
Abstract
The electrochemical performances of lithium-ion batteries(LIBs) are closely related to the interphase between the electrode materials and electrolytes. However, the development of lithium-ion batteries is hampered by the formation of uncontrollable solid electrolyte interphase(SEI) and subsequent potential safety issues associated with dendritic formation and cell short-circuits during cycling. Fabricating artificial SEI layer can be one promising approach to solve the above issues. This review summarizes the principles and methods of fabricating artificial SEI for three types of main anodes: deposition-type(e.g., Li), intercalation-type(e.g., graphite) and alloy-type(e.g., Si, Al). The review elucidates recent progress and discusses possible methods for constructing stable artificial SEIs composed of salts, polymers, oxides, and nanomaterials that simultaneously passivate anode against side reactions with electrolytes and regulate Li+ ions transport at interfaces. Moreover, the reaction mechanism of artificial SEIs was briefly analyzed, and the research prospect was also discussed.
Keywords
Lithium-ion battery
/
Artificial solid electrolyte interphase(SEI)
/
Anode
/
Reaction mechanism
Cite this article
Download citation ▾
Haitao Wang, Yongbing Tang.
Artificial Solid Electrolyte Interphase Acting as “Armor” to Protect the Anode Materials for High-performance Lithium-ion Battery.
Chemical Research in Chinese Universities, 2020, 36(3): 402-409 DOI:10.1007/s40242-020-0091-5
| [1] |
Dong Z H, Lai X Y, Halpert J E, Yang N L, Yi L X, Zhai J, Wang D, Tang Z Y, Jiang L. Adv. Mater., 2012, 24(8): 1046.
|
| [2] |
Li Y J, Liu Y, Zhao Q Z, Zheng C M. Chem. J. Chinese Universities, 2019, 40(12): 2542.
|
| [3] |
Liu Q R, Wang H T, Jiang C L, Tang Y B. Energy Storage Mater., 2019, 23: 566.
|
| [4] |
Yin H, Zhou D, Cong L N, Xie H M, Qiu Y Q. Chem. J. Chinese Universities, 2015, 36(10): 1990.
|
| [5] |
Zhu X B, Schulli T, Wang L Z. Chem. Res. Chinese Universities, 2020, 36(1): 24.
|
| [6] |
Guo M Y, Zong C X, Ai S J, Fu F Z, Wang Q, Liu J, Sun D L, Guo Y L, Guo Y P. Chem. J. Chinese Universities, 2017, 38(10): 1857.
|
| [7] |
He H Y, Fu W, Wang H T, Wang H, Jin C H, Fan H J. Nano Energy, 2017, 34: 449.
|
| [8] |
Xu R, Cheng X B, Yan C, Zhang X Q, Xiao Y, Zhao C Z, Huang J Q, Zhang Q. Matter, 2018, 1(2): 317.
|
| [9] |
Obrovac M N, Chevrier V L. Chem. Rev., 2014, 114(23): 11444.
|
| [10] |
Lin W G, Sun W H, Qu Z K, Feng X L, Rong J F, Chen X, Yang W S. Chem. J. Chinese Universities, 2019, 40(6): 1216.
|
| [11] |
Wu W, Liu Y C, Zhu G C, An J Y, Dou G P, Wang Y Y, Liu J, Sun D L, Guo Y P. Chem. J. Chinese Universities, 2019, 40(11): 2332.
|
| [12] |
Tikekar M D, Choudhury S, Tu Z, Archer L A. Nat. Energy, 201, 1(9): 1.
|
| [13] |
Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F. Nat. Nanotechnol., 2018, 14(1): 50.
|
| [14] |
Liang D, Bao T, Gao T, Zhang J. Energy Storage Science and Technology, 2018, 7(3): 418.
|
| [15] |
Shen X, Zhang R, Chen X, Cheng X B, Li X Y, Zhang Q. Adv. Funct. Mater., 2020, 10(10): 1903645.
|
| [16] |
Wan J, Hao Y, Shi Y, Song Y X, Yan H J, Zheng J, Wen R, Wan L J. Nat. Commun., 2019, 10(1): 3265.
|
| [17] |
Dong Y, Ben T. Chem. Res. Chinese Universities, 2019, 35(4): 654.
|
| [18] |
Zhou X J, Xu L Y, Liu X Y, Zhang J J, Diao H C, Ma X H. Chem. Res. Chinese Universities, 2018, 34(4): 628.
|
| [19] |
Xu S M, Duan H, Shi J L, Zuo T T, Hu X C, Lang S Y, Yan M, Liang J Y, Yang Y G, Kong Q H, Zhang X, Guo Y G. Nano Res., 2020, 13(2): 430.
|
| [20] |
Kozen A C, Lin C F, Zhao O, Lee S B, Rubloff G W, Noked M. Chem. Mater., 2017, 29(15): 6298.
|
| [21] |
Dong W, Shen D, Yang S B, Liang B, Wang X L, Liu Y, Li S N. Chem. Res. Chinese Universities, 2018, 34(2): 235.
|
| [22] |
Bongu C S, Surble S, Alper J P, Boulineau A, Martin J F, De-marque A, Coulon P E, Rosso M, Ozanam F, Franger S, Her-lin-Boime N, Le Caer S. J. Phys. Chem. C, 2019, 123(47): 28550.
|
| [23] |
Liu T, Feng X L, Jin X, Shao M Z, Su Y T, Zhang Y, Zhang X B. Angew. Chem. Int. Ed., 2019, 131(50): 18240.
|
| [24] |
Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. J. Mater. Chem. A, 2017, 5(7): 3483.
|
| [25] |
Zhi J, Yazdi A Z, Valappil G, Haime J, Chen P. Sci. Adv., 2017, 3(9): e1701010.
|
| [26] |
Hou G, Ma X, Sun Q, Ai Q, Xu X, Chen L, Li D, Chen J, Zhong H, Li Y, Xu Z, Si P, Feng J, Zhang L, Ding F, Ci L. ACS Appl. Mater. Interfaces, 2018, 10(22): 18610.
|
| [27] |
Wang M, Zhang F, Lee C S, Tang Y. Adv. Energy Mater., 2017, 7(23): 1700536.
|
| [28] |
Yang Q, Li W, Dong C, Ma Y, Yin Y, Wu Q, Xu Z, Ma W, Fan C, Sun K. J. Energy Chem., 2020, 42: 83.
|
| [29] |
Liu S, Xia X, Deng S, Xie D, Yao Z, Zhang L, Zhang S, Wang X, Tu J. Adv. Mater., 2019, 31(3): 1806470.
|
| [30] |
Li N W, Yin Y X, Yang C P, Guo Y G. Adv. Mater., 201, 28(9): 1853.
|
| [31] |
Yu Y, Yin Y B, Ma J L, Chang Z W, Sun T, Zhu Y H, Yang X Y, Liu T, Zhang X B. Energy Storage Mater., 2019, 18: 382.
|
| [32] |
Yuan Y, Wu F, Chen G, Bai Y, Wu C. J. Energy Chem., 2019, 37: 197.
|
| [33] |
Ma L, Kim M S, Archer L A. Chem. Mater., 2017, 29(10): 4181.
|
| [34] |
Yan C, Li H R, Chen X, Zhang X Q, Cheng X B, Xu R, Huang J Q, Zhang Q. J. Am. Chem. Soc., 2019, 141(23): 9422.
|
| [35] |
Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q. J. Energy Chem., 2019, 37: 29.
|
| [36] |
Wang A, Kadam S, Li H, Shi S, Qi Y. npj Comput. Mater., 2018, 4: 15.
|
| [37] |
Xu R, Zhang X Q, Cheng X B, Peng H J, Zhao C Z, Yan C, Huang J Q. Adv. Funct. Mater., 2018, 28(8): 1705838.
|
| [38] |
Zhao Y, Yang X, Sun Q, Gao X, Lin X, Wang C, Zhao F, Sun Y, Adair K R, Li R, Cai M, Sun X. Energy Storage Mater., 2018, 15: 415.
|
| [39] |
Yang Q, Cui M, Hu J, Chu F, Zheng Y, Liu J, Li C. ACS Nano, 2020, 14(2): 1866.
|
| [40] |
Lau J, DeBlock R H, Butts D M, Ashby D S, Choi C S, Dunn B S. Adv. Energy Mater., 2018, 8(27): 1800933.
|
| [41] |
Yuan Y, Wu F, Chen G, Bai Y, Wu C. J. Energy Chem., 2019, 37: 197.
|
| [42] |
Kang D, Hart N, Koh J, Ma L, Liang W, Xu J, Sardar S, Lemmon J P. Energy Storage Mater., 2020, 24: 618.
|
| [43] |
Li S, Lorandi F, Whitacre J F, Matyjaszewski K. Macromol. Chem. Phys., 2020, 221(1): 1900379.
|
| [44] |
Zhang Y, Wang G, Tang L, Wu J, Guo B, Zhu M, Wu C, Dou S X, Wu M. J. Mater. Chem. A, 2019, 7(44): 25369.
|
| [45] |
Chen H, Pei A, Lin D, Xie J, Yang A, Xu J, Lin K, Wang J, Wang H, Shi F, Boyle D, Cui Y. Adv. Energy Mater., 2019, 9(22): 1900858.
|
| [46] |
Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, Liu Y, Xiong X. Angew. Chem. Int. Ed., 2020, 59(5): 2055.
|
| [47] |
Feng Y, Zhang C, Jiao X, Zhou Z, Song J. Energy Storage Mater., 2020, 25: 172.
|
| [48] |
Chen D, Huang S, Zhong L, Wang S, Xiao M, Han D, Meng Y. Adv. Funct. Mater., 2020, 30: 1907717.
|
| [49] |
Liu Y, Lin D, Yuen P Y, Liu K, Xie J, Dauskardt R H, Cui Y. Adv. Mater., 2017, 29(10): 1605531.
|
| [50] |
Verma P, Novak P. Carbon, 2012, 50(7): 2599.
|
| [51] |
Ku J, Hwang S, Ham D, Song M, Shon J, Ji S, Choi J, Doo S. J. Power Sources, 2015, 287: 36.
|
| [52] |
Joshi P, Iwai K, Patnaik S G, Vedarajan R, Matsumi N. J. Electrochem. Soc., 2018, 165(3): A493.
|
| [53] |
Wang H Y, Wang F M. J. Power Sources, 2013, 233: 1.
|
| [54] |
Li W H, Ning Q L, Xi X T, Hou B H, Guo J Z, Yang Y, Chen B, Wu X L. Adv. Mater., 2019, 31(4): e1804766.
|
| [55] |
Zhang L, Zhang K, Shi Z, Zhang S. Langmuir, 2017, 33(42): 11164.
|
| [56] |
Zhang M, Xiang L, Galluzzi M, Jiang C, Zhang S, Li J, Tang Y. Adv. Mater., 2019, 31(18): 1900826.
|
| [57] |
Tong X, Zhang F, Chen G, Liu X, Gu L, Tang Y. Adv. Energy Mater., 2018, 8(6): 1701967.
|
| [58] |
Qin P, Wang M, Li N, Zhu H, Ding X, Tang Y. Adv. Mater., 2017, 29(17): 1606805.
|
| [59] |
Ji B, Zhang F, Sheng M, Tong X, Tang Y. Adv. Mater., 2017, 29(7): 1604219.
|
| [60] |
Ding B, Wu H, Xu Z P, Li X Y, Gao H J. Nano Energy, 2017, 38: 486.
|
| [61] |
Zhang Q, Xiao X, Zhou W, Cheng Y T, Verbrugge M W. Adv. Energy Mater., 2015, 5(5): 1401398.
|
| [62] |
Jiang C. L., Xiang L., Miao S. J., Shi L., Xie D. H., Yan J., Zheng Z., Zhang X., Tang Y. B., Adv. Mater., 2020, 1908470
|
| [63] |
Li J C, Dudney N J, Nanda J, Liang C D. ACS Appl. Mater. Interfaces, 2014, 6(13): 10083.
|
| [64] |
Chandrasiri K W D K, Nguyen C C, Parimalam B S, Jurng S, Lucht B L. J. Electrochem. Soc., 2018, 165(10): A1991.
|
| [65] |
Karkar Z, Guyomard D, Roue L, Lestriez B. Electrochim. Acta, 2017, 258: 453.
|
| [66] |
Ou X, Zhang G, Zhang S, Tong X, Tang Y. Energy Storage Mater., 2020, 28: 357.
|
| [67] |
Tong X, Zhang F, Ji B, Sheng M, Tang Y. Adv. Mater., 201, 28(45): 9979.
|
| [68] |
Chen G., Zhang F., Zhou Z., Li J., Tang Y., Adv. Energy Mater., 2018, 1801219
|
| [69] |
Wang K, Li X, Xie Y, He J, Yang Z, Shen X, Wang N, Huang C. ACS Appl. Mater. Interfaces, 2019, 11(27): 23990.
|