Ir-skinned Ir-Cu Nanoparticles with Enhanced Activity for Oxygen Reduction Reaction

Jiarui Wang , Ye Zhou , Libo Sun , Jingjie Ge , Jingxian Wang , Chencheng Dai , Zhichuan Xu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 467 -472.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 467 -472. DOI: 10.1007/s40242-020-0087-1
Article

Ir-skinned Ir-Cu Nanoparticles with Enhanced Activity for Oxygen Reduction Reaction

Author information +
History +
PDF

Abstract

The development of methanol-tolerate oxygen reduction reaction(ORR) electrocatalysts is of special significance to direct methanol fuel cells system. Iridium is known for its better methanol tolerance than platinum and able to survive in harsh acidic environment. However, its activity is relatively low and thus the approach to improve Ir’s ORR is desired. Herein, bimetallic Ir-Cu nanoparticles(NPs) with controllable Ir/Cu compositions(ca. 1:2 to 4:1, atomic ratio) are synthesized via a galvanic replacement-based chemical method. The as-synthesized Ir-Cu NPs are investigated as ORR catalysts after electrochemically leaching out the surface Cu and forming Ir-skinned structures. Around 2- to 3-fold enhancement in the intrinsic activity has been observed in these Ir-skinned Ir-Cu catalysts compared to Ir counterpart. The approach is demonstrated to be a promising way to prepare efficient Ir ORR catalysts and lower catalyst cost.

Keywords

Iridium / Copper / Nanoparticle / Dealloying / Oxygen reduction reaction

Cite this article

Download citation ▾
Jiarui Wang, Ye Zhou, Libo Sun, Jingjie Ge, Jingxian Wang, Chencheng Dai, Zhichuan Xu. Ir-skinned Ir-Cu Nanoparticles with Enhanced Activity for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2020, 36(3): 467-472 DOI:10.1007/s40242-020-0087-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou Y, Xi S B, Wang J X, Sun S N, Wei C, Feng Z X, Du Y H, Xu Z J. ACS Catalysis, 2018, 8(1): 673.

[2]

Wei C, Yu LH, Cui CL, Lin JD, Wei C, Mathews N, Huo F W, Sritharan T, Xu Z C. Chemical Communications, 2014, 50(58): 7885.

[3]

Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N. Ota Ken-ichiro. Journal of the Electrochemical Society, 200, 153(1): A20.

[4]

Wei C, Rao R R, Peng J, Huang B, Stephens I E L, Risch M, Xu Z J, Yang S H. Advanced Materials, 2019, 31(31): 1806296.

[5]

Lee K, Zhang L, Zhang J. Journal of Power Sources, 2007, 170(2): 291.

[6]

Lee K, Zhang L, Zhang J. Journal of Power Sources, 2007, 165(1): 108.

[7]

Zhou Y, Sun S, Xi S, Duan Y, Sritharan T, Du Y, Xu Z J. Advanced Materials, 2018, 30(11): 1705407.

[8]

Wu T, Sun S, Song J, Xi S, Du Y, Chen B, Sasangka W A, Liao H, Gan C L, Scherer G G, Zeng L, Wang H, Li H, Grimaud A, Xu Z J. Nature Catalysis, 2019, 2(9): 763.

[9]

Pei J, Mao J, Liang X, Chen C, Peng Q, Wang D, Li Y. Chemical Communications, 201, 52(19): 3793.

[10]

Wang C, Sui Y, Xiao G, Yang X, Wei Y, Zou G, Zou B. Journal of Materials Chemistry, 2015, 3(39): 19669.

[11]

Kwon T, Hwang H, Sa Y J, Park J, Baik H, Joo S H, Lee K. Advanced Functional Materials, 2017, 27(7): 1604688.

[12]

Ferreira P J, la O’ G J, Yang S H, Morgan D, Makharia R, Kocha S, Gasteiger H A. Journal of The Electrochemical Society, 2005, 152(11): A2256.

[13]

Ghodselahi T, Vesaghi M, Shafiekhani A. J. Phys. D: Appl. Phys., 2008, 42(1): 015308.

[14]

Díaz-Visurraga J, Daza C, Pozo C, Becerra A, von Plessing C, García A. International Journal of Nanomedicine, 2012, 7: 3597.

[15]

Brege J J, Hamilton C E, Crouse C A, Barron A R. Nano Lett., 2009, 9(6): 2239.

[16]

Chakrapani K, Sampath S. Chemical Communications, 2014, 50(23): 3061.

[17]

Toda T, Igarashi H, Uchida H, Watanabe M. Journal of The Electrochemical Society, 1999, 146(10): 3750.

[18]

Sun Y, Mayers B, Xia Y. Adv. Mater., 2003, 15(7/8): 641.

[19]

Wei C, Feng Z, Scherer G G, Barer J, Yang S H, Xu Z. Adv. Mater., 2017, 29: 1606800.

[20]

Wei C, Sun S, Mandler D, Wang X, Qiao S Z, Xu Z J. Chemical Society Reviews, 2019, 48(9): 2518.

[21]

Sun S, Li H, Xu Z J. Joule, 2018, 2(6): 1024.

[22]

Nguyen T D, Scherer G G, Xu Z J. Electrocatalysis, 201, 7(5): 420.

[23]

Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315(5811): 493.

[24]

Kitchin J R, Nørskov J K, Barteau M A, Chen J G. The Journal of Chemical Physics, 2004, 120(21): 10240.

[25]

Kitchin J R, Nørskov J K, Barteau M A, Chen J G. Phys. Rev. Lett., 2004, 93(15): 156801.

[26]

Xu Z, Carlton C E, Allard L F, Yang S H, Kimberly H S. The Journal of Physical Chemistry Letters, 2010, 1(17): 2514.

[27]

Suntivich J, Xu Z, Carlton C E, Kim J, Han B, Lee S W, Bonnet N, Marzari N, Allard L F, Gasteiger H A, Kimberly H S, Yang S H. Journal of the American Chemical Society, 2013, 135(21): 7985.

[28]

Liu H, Yang J. Journal of Materials Chemistry A, 2014, 2(19): 7075.

[29]

Marinova T S, Kostov K L. Surface Science, 1987, 181(3): 573.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/