Self-cleaning and Oil/Water Separation of 3D Network Super-hydrophobic Bead-like Fluorinated Silica Pellets/Poly(aryl ether ketone) Composite Membrane Fabricated via a Facile One-step Electrospinning
Zengduo Cui , Yongpeng Wang , Mengzhu Liu , Haibo Zhang , Zhenhua Jiang
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1320 -1325.
Self-cleaning and Oil/Water Separation of 3D Network Super-hydrophobic Bead-like Fluorinated Silica Pellets/Poly(aryl ether ketone) Composite Membrane Fabricated via a Facile One-step Electrospinning
Novel super-hydrophobic fluorinated silica pellets/poly(aryl ether ketone) composite membranes with controllable structure have been prepared through incorporating poly(aryl ether ketone)s with (3-trifluoromethyl)-phenyl side groups and fluorinated silica pellets(F-SiO2) by a facile one-step electrospinning. Under the condition of adding 50%(mass fraction) F-SiO2 in the composite membrane, the water contact angle(WCA) reached its maximum (157°±4.3°). The controllable micro/nano-structures grown on the electrospun fibers could be regulated by the F-SiO2 loading, which was illustrated by scanning electron microscopy(SEM). Moreover, these super-hydrophobic membranes also demonstrated excellent durability, anti-fouling property and oil-water separation ability after 200 h of water flushing. These promising PAEK composite membranes with controllable structure have the potential values in large-scale application of filtration, oil-water separation and antifouling.
Poly(aryl ether ketone) / Electrospinning / Super-hydrophobic membrane / Self-cleaning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
/
| 〈 |
|
〉 |