Fabrication of ZnS/CdS Heterojunction by Using Bimetallic MOFs Template for Photocatalytic Hydrogen Generation

Yuxin Zhu , Xing Jiang , Lin Lin , Shuhua Wang , Chao Chen

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1032 -1038.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1032 -1038. DOI: 10.1007/s40242-020-0083-5
Article

Fabrication of ZnS/CdS Heterojunction by Using Bimetallic MOFs Template for Photocatalytic Hydrogen Generation

Author information +
History +
PDF

Abstract

A new ZnS/CdS heterojunction is constructed through the direct sulfurization of a metal ions exchanged Zn/Cd-MOF precursor(MOF=metal-organic framework material). The composition, structure, morphology, photoabsorption and photoelectric performance of the ZnS/CdS are characterized by powder X-ray diffraction(PXRD), scanning electron microscope(SEM), transmission electron microscope(TEM), diffuse reflection spectrum(DRS), photoelectric current(PEC), electrochemical impedance spectroscopy(EIS) and photoluminescence(PL) technologies. Since the metal ions are highly orderly separated by the organic ligands and the inherent porosity of the Zn/Cd-MOF, the as-synthesized ZnS/CdS possesses a large surface area and intimate contact at the heterogeneous interface with uniform ZnS/CdS nanoparticles. The photocatalytic hydrogen evolution activity of the ZnS/CdS is investigated under visible light irradiation(λ⩾420 nm). It exhibits enhanced photocatalytic performance that the optimal ZnS/CdS achieves a maximum average hydrogen production rate of 2348 µmol·h−1·g−1. A possible electron transfer mechanism is therefore proposed by the analyses of the Mott-Schottky plots.

Keywords

ZnS/CdS heterojunction / Zn/Cd-MOF precursor / Photocatalytic hydrogen evolution

Cite this article

Download citation ▾
Yuxin Zhu, Xing Jiang, Lin Lin, Shuhua Wang, Chao Chen. Fabrication of ZnS/CdS Heterojunction by Using Bimetallic MOFs Template for Photocatalytic Hydrogen Generation. Chemical Research in Chinese Universities, 2020, 36(6): 1032-1038 DOI:10.1007/s40242-020-0083-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao C, Wang J, Xu H, Xiong Y. Chem. Soc. Rev., 2017, 46(10): 2799.

[2]

Li X, Yu J G, Low J X, Fang Y P, Xiao J, Chen X B. J. Mater. Chem. A, 2015, 3(6): 2485.

[3]

Shen L J, Liang R W, Wu L. Chinese J. Catal., 2015, 36(12): 2071.

[4]

Li K, Chen R, Li S L, Han M, Xie S L, Bao J C, Dai Z H, Lan Y Q. Chem. Sci., 2015, 6(9): 5263.

[5]

Zhang Y, Wang G, Ma W, Ma B, Jin Z. Dalton Trans., 2018, 47(32): 11176.

[6]

Ji L, Zhou X M, Schmuki P. Chem-Asian. J., 2019, 14(15): 2724.

[7]

Lin L, Huang S Y, Zhu Y X, Du B, Zhang Z H, Chen C, Wang X W, Zhang N. Dalton Trans., 2019, 48(8): 2715.

[8]

Zeng M, Chai Z G, Deng X, Li Q, Feng S Q, Wang J, Xu D S. Nano Res., 201, 9(9): 2729.

[9]

Wang Z, Jin Z, Yuan H, Wang G, Ma B. J. Colloid Interf. Sci., 2018, 532: 287.

[10]

Zhang Y K, Jin Z L. Phys. Chem. Chem. Phys., 2019, 21(16): 8326.

[11]

Zhang F M, Sheng J L, Yang Z D, Sun X J, Tang H L, Lu M, Dong H, Shen F C, Liu J, Lan Y Q. Angew. Chem. Int. Ed., 2018, 57(37): 12106.

[12]

Zhao X, Feng J, Liu J, Shi W, Yang G, Wang G C, Cheng P. Angew. Chem. Int. Ed., 2018, 57(31): 9790.

[13]

Xu X J, Hu L F, Gao N, Liu S X, Wageh S, Al-Ghamdi A A, Alshahrie A, Fang X S. Adv. Funct. Mater., 2015, 25(3): 445.

[14]

Xin Z C, Li L, Zhang W Z, Sui T T, Li Y X, Zhang X Y. Mol. Catal., 2018, 447: 1.

[15]

Wang J M, Wang Z J, Li L, Chen J Z, Zheng J F, Jia S P, Zhu Z P. RSC Adv., 2017, 7(40): 24864.

[16]

Reddy C V, Shim J, Cho M. J. Phys. Chem. Solids, 2017, 103: 209.

[17]

Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C Y. Chem. Soc. Rev., 2014, 43(16): 6011.

[18]

Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z. Nature, 201, 539(7627): 76.

[19]

Su Y, Ao D, Liu H, Wang Y. J. Mater. Chem. A, 2017, 5(18): 8680.

[20]

Cao X, Tan C, Sindoro M, Zhang H. Chem. Soc. Rev., 2017, 46(10): 2660.

[21]

Su Y, Zhang Z, Liu H, Wang Y. Appl. Catal. B: Environ., 2017, 200: 448.

[22]

Sun J Z, Semenchenko L, Lim W T, Ballesteros R M F, Varela-Guerrero V, Jeong H. Micropor. Mesopor. Mater., 2018, 264: 35.

[23]

Qiu J H, Zhang X G, Feng Y, Zhang X F, Wang H T, Yao J F. Appl. Catal. B: Environ., 2018, 231: 317.

[24]

Ranjith K S, Castillo R B, Sillanpaa M, Rajendra Kumar R T. Appl. Catal. B: Environ., 2018, 237: 128.

[25]

Zhang Y K, Jin Z L, Yuan H, Wang G R, Ma B Z. Appl. Surf. Sci., 2018, 462: 213.

[26]

Chen J, Dong C L, Zhao D M, Huang Y C, Wang X X, Samad L, Dang L N, Shearer M, Shen S H, Guo L J. Adv. Mater., 2017, 29(21): 1606198.

[27]

Cai L, Du Y C, Guan X J, Shen S H. Chinese Chem. Lett., 2019, 30(12): 2363.

[28]

Chen R, Ao Y H, Wang C, Wang P F. Dalton Trans., 2019, 48(39): 14783.

[29]

Fan K, Jin Z L, Wang G R, Yang H, Liu D D, Hu H Y, Lu G X, Bi Y P. Catal. Sci. Technol., 2018, 8(9): 2352.

[30]

Mao L L, Huang Y C, Fu Y M, Dong C L, Shen S H. Sci. Bull., 2019, 64(17): 1262.

[31]

Liu Y, Wang G R, Li Y B, Jin Z L. J. Colloid Interf. Sci., 2019, 554: 113.

[32]

Li Q, Shan F, Sun B L, Song Y, Wang F, Ji J. Int. J. Hydrogen Energ., 2017, 42(8): 5549.

[33]

Zhu Y K, Lv C X, Yin Z C, Ren J, Yang X F, Dong C L, Liu H W, Cai R S, Huang Y C, Theis W, Shen S H, Yang D J. Angew. Chem. Int. Ed., 2020, 132(2): 878.

[34]

Jiang D C, Sun Z J, Jia H X, Lu D P, Du P W. J. Mater. Chem. A, 201, 4(2): 675.

[35]

Xie Y P, Yu Z B, Liu G, Ma X L, Cheng H M. Energ. Environ. Sci., 2014, 7(6): 1895.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/