Li Ion Exchanged α-MnO2 Nanowires as Efficient Catalysts for Li-O2 Batteries

Jie Ma , Yu Zhang , Mengwei Yuan , Caiyun Nan

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1261 -1264.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1261 -1264. DOI: 10.1007/s40242-020-0077-3
Article

Li Ion Exchanged α-MnO2 Nanowires as Efficient Catalysts for Li-O2 Batteries

Author information +
History +
PDF

Abstract

Due to the limited energy densities, which could be achieved by lithium-ion cells, Li-O2 batteries, which could provide a promising super energy storage medium, attract much attention nowadays. For its high activity, high storage and low cost, Mn-based oxides have shown versatile application in various batteries. To enhance the cyclability of Li-O2 batteries, here, we synthesized a kind of α-MnO2 nanowires as a bifunctional catalyst for Li-O2 batteries. The particular structure of α-MnO2 reduces the mass transfer resistance of the battery, and the MnO2 nanowires were ion exchanged by saturated lithium sulfate solution so as to further improve the performance of the catalyst. The exchanged α-MnO2 catalyst showed a high discharge specific capacity(6243 mA·h/g at a current density of 200 mA/g) and significantly improved the cyclability up to the 55th cycle(200 mA/g with capacity of 1000 mA·h/g). The results show that the Li ion exchange method is a promising strategy for improving the performance of MnO2 catalyst for Li-O2 batteries.

Keywords

MnO2 nanowire / Electrocatalyst / Ion exchange / Li-O2 battery

Cite this article

Download citation ▾
Jie Ma, Yu Zhang, Mengwei Yuan, Caiyun Nan. Li Ion Exchanged α-MnO2 Nanowires as Efficient Catalysts for Li-O2 Batteries. Chemical Research in Chinese Universities, 2020, 36(6): 1261-1264 DOI:10.1007/s40242-020-0077-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kwak W. J., Rosy, Sharon D., Xia C., Kim H., Johnson L. R., Bruce P. G., Nazar L. F., Sun Y. K., Frimer A. A., Noked M., Freunberger S. A., Aurbach D., Chem. Rev., 2020, DOI: https://doi.org/10.1021/acs.chemrev.9b00609

[2]

Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J G, Wang Y, Liu J. Adv. Funct. Mater., 2013, 23(8): 987.

[3]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

[4]

Adams B D, Black R, Williams Z, Fernandes R, Cuisinier M, Berg E J, Novak P, Murphy G K, Nazar L F. Adv. Energy Mater., 2015, 5(1): 1400867.

[5]

Luntz A C, McCloskey B D. Chem. Rev., 2014, 114(23): 11721.

[6]

Wang Z L, Xu D, Xu J J, Zhang X B. Chem. Soc. Rev., 2014, 43(22): 7746.

[7]

Li F, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H. Nano Lett., 2013, 13(10): 4702.

[8]

Lei Y, Lu J, Luo X, Wu T, Du P, Zhang X, Ren Y, Wen J, Miller D J, Miller J T. Nano Lett., 2013, 13(9): 4182.

[9]

McCloskey B D, Scheffler R, Speidel A, Bethune D S, Shelby R M, Luntz A C. J. Am. Chem. Soc., 2011, 133(45): 18038.

[10]

McCloskey B D, Speidel A, Scheffler R, Miller D, Viswanathan V, Hummelshøj J, Nørskov J, Luntz A. J. Phys. Chem. Lett., 2012, 3(8): 997.

[11]

Gallant B M, Mitchell R R, Kwabi D G, Zhou J, Zuin L, Thompson C V, Shao-Horn Y. J. Phys. Chem. C, 2012, 116(39): 20800.

[12]

Zhu T, Li X, Zhang Y, Yuan M, Sun Z, Ma S, Li H, Sun G. J. Electroanal. Chem., 2018, 823: 73.

[13]

Yuan M, Wang R, Fu W, Lin L, Sun Z, Long X, Zhang S, Nan C, Sun G, Li H. ACS Appl. Mater. Interfaces, 2019, 11(12): 11403.

[14]

Yuan M, Yang Y, Nan C, Sun G, Li H, Ma S. Appl. Surf. Sci., 2018, 444: 312.

[15]

Sun Z, Lin L, Yuan M, Li H, Sun G, Nan C, Ma S, Yang X. Electrochim. Acta, 2018, 281: 420.

[16]

Zhang Y, Hu M, Yuan M, Sun G, Li Y, Zhou K, Chen C, Nan C, Li Y. Nano Res., 2019, 12(2): 299.

[17]

Yuan M, Nan C, Yang Y, Sun G, Li H, Ma S. ACS Omega, 2017, 2(8): 4269.

[18]

Yuan M, Lin L, Yang Y, Nan C, Ma S, Li H. Nanotechnology, 2017, 28(18): 185401.

[19]

Débart A. Angew. Chem. Int. Ed., 2008, 47: 4521.

[20]

Wang X, Li Y. J. Am. Chem. Soc., 2002, 124(12): 2880.

[21]

Lu Y C, Xu Z, Gasteiger H A, Chen S, Hamad-Schifferli K, Shao-Horn Y. J. Am. Chem. Soc., 2010, 132(35): 12170.

[22]

Luo N, Ji G J, Wang H F, Li F, Liu Q C, Xu J J. ACS Nano, 2020, 14(3): 3281.

[23]

Li D, Qi H, Zhao H, Ding L, Zhang Z, Guo Z. Chem. Commun. (Camb), 2019, 55(68): 10092.

[24]

Kim J G, Noh Y, Kim Y, Lee S, Kim W B. Nanoscale, 2017, 9(16): 5119.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/