Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction

Chan Yang , Jiaxin Chai , Zhe Wang , Yonglei Xing , Juan Peng , Qingyu Yan

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 410 -419.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 410 -419. DOI: 10.1007/s40242-020-0069-3
Review

Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction

Author information +
History +
PDF

Abstract

Due to the burning of fossil fuels, the level of carbon dioxide(CO2) in the atmosphere gradually rises, leading to serious greenhouse effect and environmental problems. Electrocatalytic reduction of CO2 is currently an efficient way to convert CO2 to value-added products. Bismuth(Bi)-based nanomaterials have raised great interests due to their excellent activity and high selectivity to electrocatalytic CO2 reduction. In this review, the fundamental principles of electrochemical CO2 reduction reaction(CO2RR) are introduced at first. Moreover, the recent development of Bi-based electrocatalytic materials including Bi with various nanostructures(nanoparticle, nanosheet, etc.), Bi-based compounds(Bi oxide, bimetal chalcogenide, etc.), and Bi/C nanocomposites are summarized. In the end, the future prospects and challenges of electrocatalysts for CO2 reduction are discussed.

Keywords

Electrocatalysis / Carbon dioxide reduction / Nanostructure / Compound / Nano-composite

Cite this article

Download citation ▾
Chan Yang, Jiaxin Chai, Zhe Wang, Yonglei Xing, Juan Peng, Qingyu Yan. Recent Progress on Bismuth-based Nanomaterials for Electrocatalytic Carbon Dioxide Reduction. Chemical Research in Chinese Universities, 2020, 36(3): 410-419 DOI:10.1007/s40242-020-0069-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Spinner N S, Vega J A, Mustain W E. Catal. Sci. Technol., 2012, 2(1): 19.

[2]

Xie S F, Peng H-C, Lu N, Wang J G, Kim M J, Xie Z X, Xia Y N. J. Am. Chem. Soc., 2013, 135(44): 16658.

[3]

Wu M G, Liao J Q, Yu L X, Lv R T, Li P, Sun W P, Tan R, Duan X C, Zhang L, Li F, Kim J, Shin K H, Seok P H, Zhang W C, Guo Z P, Wang H T, Tang Y P, Gorgolis G, Galiotis C, Ma J M. Chem: Asian J., 2020, 15(7): 995.

[4]

Lam M K, Lee K T. Biotechnol. Adv., 2012, 30(3): 673.

[5]

Fiorani G, Guo W, Kleij A W. Green Chem., 2015, 17(3): 1375.

[6]

Alissandratos A, Easton C J. Beilstein J. Org. Chem., 2015, 11: 2370.

[7]

Hao J H, Shi W D. Chinese J. Catal., 2018, 39(7): 1157.

[8]

Mao X W, Hatton T A. Ind. Eng. Chem. Res., 2015, 54(16): 4033.

[9]

Zhang Y, Zhang X L, Ling Y Z, Li F W, Bond AM, Zhang J. Angew. Chem., 2018, 130(40): 13467.

[10]

Wu M G, Xu B L, Zhang Y F, Qi S H, Ni W, Hu J, Ma J M. Chem. Eng. J., 2020, 381: 122558.

[11]

Wang Z L, Li C L, Yamauchi Y. Nano Today, 201, 11(3): 373.

[12]

Kuhl K P, Hatsukade T, Cave E R, Abram D N, Kibsgaard J, Jaramillo T F. J. Am. Chem. Soc., 2014, 136(40): 14107.

[13]

Costentin C, Robert M, Sav©ant J-M. Chem. Soc. Rev., 2013, 42(6): 2423.

[14]

Gao D F, Zhou H, Wang J, Miao S, Yang F, Wang G X, Wang J G, Bao X H. J. Am. Chem. Soc., 2015, 137(13): 4288.

[15]

Gao D F, Zhou H, Cai F, Wang J G, Wang G X, Bao X H. ACS Catal., 2018, 8: 1510.

[16]

Tao H C, Zhang Y Q, Gao Y N, Sun Z Y, Yan C, Texter J. Phys. Chem. Chem. Phys., 2017, 19(2): 921.

[17]

Zhu D D, Liu J L, Qiao S Z. Adv. Mater., 201, 28(18): 3423.

[18]

Yoo J S, Christensen R, Vegge T, Norskov J K, Studt F. ChemSusChem, 201, 9(4): 358.

[19]

Yang Y L, Tang Y, Jiang H M, Chen Y M, Wan P Y, Fan M H, Zhang R R, Ullah S, Pan L, Zou J-J, Lao M M, Sun W P, Yang C, Zheng G F, Peng Q L, Wang T, Luo Y L, Sun X P, Konev A S, Levin O V, Lianos P, Hu Z F, Shen Z R, Zhao Q L, Wang Y, Todrova N, Trapalis C, Sheridan M V, Wang H P, Zhang L, Sun S M, Wang W Z, Ma J M. Chin. Chem. Lett., 2019, 30(12): 2089.

[20]

Lim R J, Xie M S, Sk M A, Lee J-M, Fisher A, Wang X, Lim K H. Catal. Today, 2014, 233: 169.

[21]

Kortlever R, Shen J, Schouten K J P, Calle-Vallejo F, Koper M T M. J. Phys. Chem. Lett., 2015, 6(20): 4073.

[22]

Wu J H, Huang Y, Ye W, L Y G. Adv. Sci., 2017, 4(11): 1700194.

[23]

Schneider J, Jia H, Muckerman J T, Fujita E. Chem. Soc. Rev., 2012, 41(6): 2036.

[24]

Benson E E, Kubiak C P, Sathrum A J, Smieja J M. Chem. Soc. Rev., 2009, 38(1): 89.

[25]

Kondratenko E V, Mul G, Baltrusaitis J, Larrazábal G O, Pérez-Ramírez J. Energy Environ. Sci., 2013, 6(11): 3112.

[26]

Wang Y, Zhu X R, Li Y F. J. Phys. Chem. Lett., 2019, 10(16): 4663.

[27]

Safizadeh F, Ghali E, Houlachi G. Int. J. Hydrog. Energy, 2015, 40(1): 256.

[28]

Shinagawa T, Garcia-Esparza A T, Takanabe K. Sci. Rep., 2015, 5(1): 13801.

[29]

Garsany Y, Baturina O A, Swider-Lyons K E, Kocha S S. Anal. Chem., 2010, 82(15): 6321.

[30]

Neubauer S S, Krause R K, Schmid B, Guldi D M, Schmid G. Adv. Energy Mater., 201, 6(9): 1502231.

[31]

Sun J F, Wang J Q, Li Z P, Yang Z G, Yang S R. RSC Adv., 2015, 5(64): 51773.

[32]

Wu J G, Fan Z, Xiao D Q, Zhu J G, Wang J. Prog. Mater. Sci., 201, 84: 335.

[33]

Han N, Wang Y, Yang H, Deng J, Wu J H, Li Y F, Li Y G. Nat. Commun., 2018, 9(1): 1320.

[34]

Cui H J, Guo Y B, Guo L, Wang L, Zhou Z, Peng Z Q. J. Mater. Chem. A, 2018, 6(39): 18782.

[35]

Khezri B, Fisher A C, Pumera M. J. Mater. Chem. A, 2017, 5(18): 8230.

[36]

Lu Q, Jiao F. Nano Energy, 201, 29: 439.

[37]

Aneke M, Wang M. Appl. Energy, 201, 179: 350.

[38]

Panwar N L, Kaushik S C, Kothari S. Renew. Sust. Energ. Rev., 2011, 15(3): 1513.

[39]

Ismail A A, Bahnemann D W. Sol. Energy Mater. Sol. Cells, 2014, 128: 85.

[40]

Xu K, Wang L, Xu X, Dou S X, Hao W C, Du Y. Energy Stor. Mater., 2019, 19: 446.

[41]

Abraham B G, Maniam K K, Kuniyil A, Chetty R. Fuel Cells, 201, 16(5): 656.

[42]

Yoshio H, Katsuhei K, Akira M, Shin S. Chem. Lett., 198, 15(6): 897.

[43]

Zhong H X, Qiu Y L, Zhang T T, Li X F, Zhang H M, Chen X B. J. Mater. Chem. A, 201, 4(36): 13746.

[44]

Zhang Z Y, Chi M F, Veith G M, Zhang P F, Lutterman D A, Rosenthal J, Overbury S H, Dai S, Zhu H Y. ACS Catal., 201, 6(9): 6255.

[45]

Kim S, Dong W J, Gim S, Sohn W, Park J Y, Yoo C J, Jang H W, Lee J-L. Nano Energy, 2017, 39: 44.

[46]

Medina-Ramos J, Lee S S, Fister T T, Hubaud A A, Sacci R L, Mullins D R, DiMeglio J L, Pupillo R C, Velardo S M, Lutterman D A, Rosenthal J, Fenter P. ACS Catal., 2017, 7(10): 7285.

[47]

Koh J H, Won D H, Eom T, Kim N-K, Jung K D, Kim H, Hwang Y J, Min B K. ACS Catal., 2017, 7(8): 5071.

[48]

Su P P, Xu W B, Qiu Y L, Zhang T T, Li X F, Zhang H M. ChemSusChem, 2018, 11(5): 848.

[49]

Qiu Y, Du J, Dai C N, Dong W, Tao C Y. J. Electrochem. Soc., 2018, 165(10): 594.

[50]

Garcia de Arquer F P, Bushuyev O S, De Luna P, Dinh C T, Seifitokaldani A, Saidaminov M I, Tan C S, Quan L N, Proppe A, Kibria M G, Kelley S O, Sinton D, Sargent E H. Adv. Mater., 2018, 30(38): e1802858.

[51]

Gong Q F, Ding P, Xu M Q, Zhu X R, Wang M Y, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng Z X, Li Y F, Zhou W, Li Y G. Nat. Commun., 2019, 10(1): 2807.

[52]

Deng P L, Wang H M, Qi R J, Zhu J X, Chen S H, Yang F, Zhou L, Qi K, Liu H F, Xia BY. ACS Catal., 2019, 10(1): 743.

[53]

Gao T F, Wen X M, Xie T H, Han N N, Sun K, Han L, Wang H C, Zhang Y, Kuang Y, Sun X M. Electrochim. Acta, 2019, 305: 388.

[54]

Sun X F, Zhu Q Q, Kang X C, Liu H Z, Qian Q L, Zhang Z F, Han B X. Angew. Chem. Int. Ed., 201, 55(23): 6771.

[55]

Lv W X, Zhou J, Bei J J, Zhang R, Wang L, Xu Q, Wang W. Appl. Sur. Sci., 2017, 393: 191.

[56]

Hoffman Z B, Gray T S, Xu Y, Lin Q Y, Gunnoe T B, Zangari G. ChemSusChem., 2019, 12(1): 231.

[57]

Jia L, Yang H, Deng J, Chen J M, Zhou Y, Ding P, Li L G, Han N, Li Y G. Chinese J. Chem., 2019, 37(5): 497.

[58]

Medina-Ramos J, DiMeglio J L, Rosenthal J. J. Am. Chem. Soc., 2014, 136(23): 8361.

[59]

Lee C W, Hong J S, Yang K D, Jin K, Lee J H, Ahn H-Y, Seo H, Sung N-E, Nam K T. ACS Catal., 2018, 8(2): 931.

[60]

Zhang E H, Wang T, Yu K, Liu J, Chen W X, Li A, Rong H P, Lin R, Ji S F, Zheng X S, Wang Y, Zheng L R, Chen C, Wang D S, Zhang J T, Li Y D. J. Am. Chem. Soc., 2019, 141(42): 16569.

[61]

An X W, Li S S, Yoshida A, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. ACS Appl. Mater. Interfaces., 2019, 11(45): 42114.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/