Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells

Liguo Gao , Yeling Yan , Yang Li , Tingli Ma

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1279 -1283.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1279 -1283. DOI: 10.1007/s40242-020-0060-z
Article

Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells

Author information +
History +
PDF

Abstract

To reduce the quadratic scaling of the series resistance(R s) and sheet resistance(R st) of the devices, physical isolation of the large area devices into small pieces has been proven to be a reliable and cost-efficient patterning technique. In this paper, we got an interesting result that the physical isolation did not show obvious effect on the photovoltaic performance of perovskite solar cells(PSCs) when fixing the active area. Three different isolation types, unetched ITO, etched ITO, and laser etching whole devices, have been induced to investigate the physical isolation roles. The results show that the electrons and holes could be collected efficiently in active area for all the isolation types. The proposed mechanism illustrates that the nonradiative recombination and recombination of electrons and hole in inactive area do not influence the performance of devices. This work may open a new way for the commercialization of PSCs by reducing the complex process and the etching costs.

Keywords

Perovskite solar cell / Isolation type / Laser etching / Large area / Series resistance / Physical isolation

Cite this article

Download citation ▾
Liguo Gao, Yeling Yan, Yang Li, Tingli Ma. Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells. Chemical Research in Chinese Universities, 2020, 36(6): 1279-1283 DOI:10.1007/s40242-020-0060-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131: 6050.

[2]

Hodes G. Science, 2013, 342: 317.

[3]

Zhang F, Bi D Q, Pellet N, Xiao C X, Li Z, Berry J J, Zakee-ruddin S M, Zhu K, Grätzel M. Energy Environ. Sci., 2018, 11: 3480.

[4]

NREL Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html

[5]

Huang F, Li M, Siffalovic P, Cao G, Tian J. Energy Environ. Sci., 2019, 12: 518.

[6]

Li Z, Klein T R, Kim D H, Yang M J, Berry J J, van Hest M F A M, Zhu K. Nat. Rev. Mater., 2018, 3: 18017.

[7]

Chen Y, Zhang L, Zhang Y, Gao H, Yan H. RSC Adv., 2018, 8: 10489.

[8]

Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A. Science, 2017, 358: 739.

[9]

Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering, 2011, Chichester: John Wiley & Sons

[10]

Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Grätzel M, Han L. Nature, 2017, 550: 92.

[11]

Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345: 295.

[12]

Wei Z, Chen H, Yan K, Yang S. Angew. Chem. Int. Ed., 2014, 53: 13239.

[13]

Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J. Energy Environ. Sci., 2015, 8: 1544.

[14]

Lee J W, Na S I, Kim S S. J. Power Sources, 2017, 339: 33.

[15]

Bishop J E, Routledge T J, Lidzey D G. J. Phys. Chem. Lett., 2018, 9: 1977.

[16]

Cai L, Liang L, Wu J, Ding B, Gao L, Fan B. J. Semicond., 2017, 38: 014006.

[17]

Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science, 2017, 356: 1376.

[18]

Tan H, Jain A, Voznyy O, Lan X, Garcia de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H. Science, 2017, 355: 722.

[19]

Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L Y. Science, 2015, 350: 944.

[20]

Hambsch M, Lin Q, Armin A, Burn P L, Meredith P. J. Mater. Chem. A, 201, 4: 13830.

[21]

Moon S J, Yum J H, Lofgren L, Walter A, Sansonnens L, Benkhaira M, Nicolay S, Bailat J, Ballif C. IEEE J. Photovoltaics, 2015, 5: 1087.

[22]

Rakocevic L, Gehlhaar R, Merckx T, Qiu W, Paetzold U W, Fledderus H, Poortmans J. IEEE J. Photovoltaics, 201, 7: 404.

[23]

Kim J, Yun J S, Cho Y, Lee D S, Wilkinson B, Soufiani A M, Deng X, Zheng J, Shi A, Lim S, Chen S, Hameiri Z, Zhang M, Lau C F J, Huang S, Green M A, Ho-Baillie A W Y. ACS Energy Lett., 2017, 2: 1978.

[24]

Huang J, Yuan Y, Shao Y, Yan Y. Nat. Rev. Mater., 2017, 2: 17042.

[25]

Fan Z, Sun K, Wang J. J. Mater. Chem. A, 2015, 3: 18809.

[26]

Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Science, 2013, 342: 344.

[27]

de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C. J. Phys. Chem. Lett., 2014, 5: 1035.

[28]

Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Acta Crystallogr., Sect. B: Struct. Sci., 2008, 64: 702.

[29]

Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Science, 2015, 347: 967.

[30]

Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K. Science, 2015, 347: 519.

[31]

Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Adv. Mater., 2014, 26: 6503.

[32]

Lee D K, Jeong D N, Ahn T K, Park N G. ACS Energy Lett., 2019, 4: 2147.

[33]

Mamun A A, Ava T T, Jeong H J, Jeong M S, Namkoong G. Phys. Chem. Chem. Phys., 2017, 19: 9143.

[34]

Xu Z. RSC Adv., 2017, 2: 3099.

[35]

de Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E. Science, 2015, 348: 683.

[36]

Yamashita D, Handa T, Ihara T, Tahara H, Shimazaki A, Wakamiya A, Kanemitsu Y. J. Phys. Chem. Lett., 201, 7: 3186.

[37]

Chen S, Wen X, Huang S, Huang F, Cheng Y B, Green M, Ho-Baillie A. Solar. RRL, 201, 1: 1600001.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/