One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries

Xin Wang , Linzhou Zhuang , Yi Jia , Lijie Zhang , Qin Yang , Wenjia Xu , Dongjiang Yang , Xuecheng Yan , Longzhou Zhang , Zhonghua Zhu , Christopher L. Brown , Pei Yuan , Xiangdong Yao

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 479 -487.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 479 -487. DOI: 10.1007/s40242-020-0056-8
Article

One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries

Author information +
History +
PDF

Abstract

Developing efficient catalysts toward both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is the core task for rechargeable metal-air batteries. Although integration of two active components should be an effective method to produce the bifunctional catalysts in principle, traditional techniques still can not attain fine tunable surface structure during material-hybridization process. Herein, we present a facile short-time in-situ argon(Ar) plasma strategy to fabricate a high-performance bifunctional hybrid catalyst of vacancy-rich CoFe2O4 synergized with defective graphene(r-CoFe2O4@DG). Reflected by the low voltage gap of 0.79 V in two half-reaction measurements, the striking capability to catalyze ORR/OER endows it excellent and durable performance in rechargeable Zn-air batteries, with a maximum power density of 155.2 mW/cm2 and robust stability(up to 60 h). Further experimental and theoretical studies validate its remarkable bifunctional energetics root from plasma-induced surface vacancy defects and interfacial charge polarization between DG and CoFe2O4. This work offers more opportunities for reliable clean energy systems by rational interfacial and defect engineering on catalyst design.

Keywords

Defect / CoFe2O4 / Oxygen reduction / Oxygen evolution / Zn-air battery

Cite this article

Download citation ▾
Xin Wang, Linzhou Zhuang, Yi Jia, Lijie Zhang, Qin Yang, Wenjia Xu, Dongjiang Yang, Xuecheng Yan, Longzhou Zhang, Zhonghua Zhu, Christopher L. Brown, Pei Yuan, Xiangdong Yao. One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chemical Research in Chinese Universities, 2020, 36(3): 479-487 DOI:10.1007/s40242-020-0056-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dou Y, Zhang L, Xu X, Sun Z, Liao T, Dou S X. Chem. Soc. Rev., 2017, 46: 7338.

[2]

Liu L, Corma A. Chem. Rev., 2018, 118: 4981.

[3]

Tan H, Tang J, Kim J, Kaneti Y V, Kang Y M, Sugahara Y, Yamauchi Y. J. Mater. Chem. A, 2019, 7: 1380.

[4]

Li Y, Dai H. Chem. Soc. Rev., 2014, 43: 5257.

[5]

Zhang J, Zhao Z, Xia Z, Dai L. Nat. Nano, 2015, 10: 444.

[6]

Fu G, Chen Y, Cui Z, Li Y, Zhou W, Xin S, Tang Y, Goodenough J B. Nano Lett., 201, 16: 6516.

[7]

Wu L L, Wang Q S, Li J, Long Y, Liu Y, Song S Y, Zhang H J. Small, 2018, 14: 1704035.

[8]

Liu Y, Wang Q, Wu L, Long Y, Li J, Song S, Zhang H. Cryst. Growth Des., 2018, 18: 3404.

[9]

Kibsgaard J, Chorkendorff I. Nat. Energy, 2019, 4: 430.

[10]

Zhang L, Doyle-Davis K, Sun X. Energy Environ. Sci., 2019, 12: 492.

[11]

Zhao Q, Yan Z, Chen C, Chen J. Chem. Rev., 2017, 117: 10121.

[12]

Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X Q, Wang H, Sun X. Adv. Energy Mater., 2017, 8: 1701694.

[13]

Liu Y, Li J, Li F, Li W, Yang H, Zhang X, Liu Y, Ma J. J. Mater. Chem. A, 201, 4: 4472.

[14]

Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, Wang X, Wu Q, Ma J, Hu Z. ACS Catal., 2015, 5: 6707.

[15]

Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. Adv. Mater., 201, 28: 9532.

[16]

Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, Xiao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X. Nat. Catal., 2019, 2: 688.

[17]

Wang X, Li Y, Jin T, Meng J, Jiao L, Zhu M, Chen J. Nano Lett., 2017, 17: 7989.

[18]

Lu X F, Gu L F, Wang J W, Wu J X, Liao P Q, Li G R. Adv. Mater., 2017, 29: 1604437.

[19]

Kim J H, Jang Y J, Kim J H, Jang J W, Choi S H, Lee J S. Nanoscale, 2015, 7: 19144.

[20]

Dou S, Tao L, Wang R, El H S, Chen R, Wang S. Adv. Mater., 2018, 30: 1705850.

[21]

Jia Y, Jiang K, Wang H, Yao X. Chem, 2019, 5: 1371.

[22]

Chen D, Qiao M, Lu Y, Hao L, Liu D, Dong C, Li Y, Wang S. Angew. Chem. Int. Ed., 2018, 57: 8691.

[23]

Nong H N, Reier T, Oh H S, Gliech M, Paciok P, Vu T H T, Teschner D, Heggen M, Petkov V, Schlögl R, Jones T, Strasser P. Nat. Catal., 2018, 1: 841.

[24]

Wang Y, Zhang Y, Liu Z, Xie C, Feng S, Liu D, Shao M, Wang S. Angew. Chem. Int. Ed., 2017, 56: 5961.

[25]

Wang X, Zhuang L, He T, Jia Y, Zhang L, Yan X, Gao M, Du A, Zhu Z, Yao X, Yu S. iScience, 2018, 7: 145.

[26]

Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo M T, Hong M, Yan X, Qian G, Zou J, Du A, Yao X. Adv. Mater., 2017, 29: 1700017.

[27]

Wei S, Li A, Liu J C, Li Z, Chen W, Gong Y, Zhang Q, Cheong W C, Wang Y, Zheng L, Xiao H, Chen C, Wang D, Peng Q, Gu L, Han X, Li J, Li Y. Nat. Nano, 2018, 13: 856.

[28]

Ma R, Liang J, Takada K, Sasaki T. J. Am. Chem. Soc., 2011, 133: 613.

[29]

Lu X, Zhao C. Nat. Commun., 2015, 6: 6616.

[30]

Gu Z, Xiang X, Fan G, Li F. J. Phys. Chem. C, 2008, 112: 18459.

[31]

Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun M S, Tong Y. Adv. Mater., 2014, 26: 3148.

[32]

Kudin K N, Ozbas B, Schniepp H C, Prud’homme R K, Aksay I A, Car R. Nano Lett., 2008, 8: 36.

[33]

Wei L, Karahan H E, Zhai S, Liu H, Chen X, Zhou Z, Lei Y, Liu Z, Chen Y. Adv. Mater., 2017, 29: 1701410.

[34]

Lin Y, Yang L, Zhang Y, Jiang H, Xiao Z, Wu C, Zhang G, Jiang J, Song L. Adv. Energy Mater., 2018, 8: 1703623.

[35]

Wang X, Zhuang L, Jia Y, Liu H, Yan X, Zhang L, Yang D, Zhu Z, Yao X. Angew. Chem. Int. Ed., 2018, 57: 16421.

[36]

Li G, Blake G R, Palstra T T M. Chem. Soc. Rev., 2017, 46: 1693.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/