Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects

Xinyue Yu , Yao Zhong , Yu Sun , Yanwei Chen

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1284 -1291.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1284 -1291. DOI: 10.1007/s40242-020-0049-7
Article

Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects

Author information +
History +
PDF

Abstract

Gold nanostars(Au NSs) are asymmetric anisotropic nanomaterials with sharp edge structure. As a promising branched nanomaterial, Au NS has excellent plasmonic absorption and scattering properties. In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS) activity of Au NSs to obtain the desired characteristics, the effects of reagents on the local surface plasmon resonance(LSPR) bands of Au NSs were studied and the morphology and size were regulated. Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region. The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS activity and their mechanism were discussed in detail. The results show that as the length of the branch tip becomes longer and the sharpness increases, the plasmonic photothermal effect of Au NSs is strengthened, and the photothermal conversion efficiency is the highest up to 40% when the length of Au NSs is the longest. Au NSs with high SERS activity are used for the Raman detection substrate. Based on this property, the quantitative detection of the pesticide thiram is achieved.

Keywords

Gold nanostar / Controlled growth / Photothermal effect / Surface-enhanced Raman scattering(SERS) activity

Cite this article

Download citation ▾
Xinyue Yu, Yao Zhong, Yu Sun, Yanwei Chen. Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects. Chemical Research in Chinese Universities, 2020, 36(6): 1284-1291 DOI:10.1007/s40242-020-0049-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li M Y, Li L L, Zhan C Y, Kohane D S. Theranostics, 201, 6: 2306.

[2]

Amane S, Judith L, Lakshminarayana P, Luis M L. Nanoscale, 2014, 6: 9817.

[3]

Song W Z, Li H, Zhang Y, He D, Li Y Z, Huang Z Z, Liu X, Yin W Z. Chem. J. Chinese Universities, 2018, 39(12): 2644.

[4]

Li R Y, Liu L, Bei H X, Li Z J. Biosens. Bioelectron., 201, 79: 457.

[5]

An J, Yang X Q, Cheng K, Song X L, Zhang L, Li C, Zhang X S, Xuan Y, Song Y Y, Fang B Y, Hou X L, Zhao Y D, Liu B. ACS Appl. Mater. Interfaces, 2017, 9: 41748.

[6]

Geun W K, Ji W H. Photochem. Photobiol. Sci., 2019, 18: 1430.

[7]

Pu Y H, Zhao Y W, Zheng P, Li M. Inorg. Chem., 2018, 57: 8599.

[8]

Gabudean A M, Biro D. J. Mol. Struct., 2011, 993: 420.

[9]

Theodorou I G, Jawad Z A, Jiang Q, Aboagye E O, Porter A E, Ryan M P, Xie F. Chem. Mater., 2017, 29: 6916.

[10]

Shao L, Susha A S, Cheung L S, Sau T K, Rogach A L, Wang J F. Langmuir, 2012, 28: 8979.

[11]

Niu W, Chua Y A, Zhang W, Huang H, Lu X. J. Am. Chem. Soc., 2015, 137: 10460.

[12]

Chatterjee S, Ringane A B, Arya A, Das G M, Dantham V R, Laha R, Hussian S. J. Nano. Res., 201, 18: 242.

[13]

Kedia A, Kumar P S. RSC Advances, 2014, 4: 4782.

[14]

Liu J, Cui H B, Yan S Y, Jing X N, Wang D Q, Meng L J. Mater. Today Commun., 2018, 16: 97.

[15]

Zhou Z J, Yan Y, Hu K W, Zou Y, Li Y W, Ma R, Zhang Q, Cheng Y Y. Biomaterials, 2017, 141: 116.

[16]

Ahmad R, Fu J, He N Y, Li S. J. Nanosci. Nanotechnol., 201, 16: 67.

[17]

Zeng J H, Wu M, Lan S Y, Li J, Zhang X L, Liu J F, Wei Z W, Zeng Y Y. J. Mater. Chem. B, 2018, 6: 7889.

[18]

Liu C J, Guo X L, Ruan C P, Hu H L, Jiang B P, Liang H, Shen X C. Acta Biomater., 2019, 96: 281.

[19]

Li J, Li J J, Zhang J, Wang X, Kawazoea N, Chen G. Nanoscale, 201, 8: 7992.

[20]

Atta S, Beetz M, Fabris L. Nanoscale, 2019, 11: 2946.

[21]

Tang W, Deng L J, Xu K W, Lu J. Surf. Coat. Technol., 2007, 201: 5944.

[22]

Svorcik V, Kolska Z, Luxbacher T, Mistrikd J. Mater. Lett., 2010, 64: 611.

[23]

Holzwarth U, Gibson N. Nat. Nanotechnol., 2011, 6: 534.

[24]

Guo Y H, Wu J, Li J, Ju H X. Biosens. Bioelectron., 201, 78: 267.

[25]

Ndokoye P, Li X Y, Zhao Q D, Li T T, Tade M O, Liu S M. J. Colloid Interface Sci., 201, 462: 341.

[26]

You Y H, Lin Y F, Nirosha B, Chang H T, Huang Y F. Nanotheranostics, 2019, 3: 266.

[27]

Savchuk O L, Carvajal J J, Massons J, Aguilo M, Diaz F. Carbon, 201, 103: 134.

[28]

Wang B, Feng G X, Seifrid M, Wang M, Liu B, Bazan G C. Angew. Chem. Int. Ed., 2017, 56: 16063.

[29]

Wang S S, Hu W C, Liu F F, Xu Q Y, Wang C. Electrochim. Acta, 2019, 301: 359.

[30]

Guo S J, Wang E. J. Colloid Interface Sci., 2007, 315: 795.

[31]

Ankudze B, Philip A, Pakkanen T T, Matikainen A, Vahimaa P. Appl. Surf. Sci., 201, 387: 595.

[32]

Park S Y, Lee J, Ko H. ACS Appl. Mater. Interfaces, 2017, 9: 44088.

[33]

Indrasekara A, Thomasa R, Fabris L. Phys. Chem. Chem. Phys., 2015, 17: 21133.

[34]

Han B J, Li Y, He Y, Lv D Z, Peng L X, Yu H M. Microchem. J., 2018, 138: 457.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/