Reaction Mechanism of H2-Assisted C3H6-SCR over Ag-Ce xZr Catalyst as Investigated by In situ FTIR

Jun Duan , Ling Zhao , Shengjun Gao , Yu Zhang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 885 -893.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 885 -893. DOI: 10.1007/s40242-020-0026-1
Article

Reaction Mechanism of H2-Assisted C3H6-SCR over Ag-Ce xZr Catalyst as Investigated by In situ FTIR

Author information +
History +
PDF

Abstract

A series of silver-doped cerium zirconium oxide(Ag-Ce xZr) samples was synthesized successfully for selective catalytic reduction of nitric oxide(NO) with hydrogen and propene(H2/C3H6-SCR) under excess oxygen condition. The catalytic activity test proved that Ag-Ce0.4Zr exhibited the best C3H6-SCR activity. Hydrogen(H2) significantly enhanced NO conversion and widened the temperature window. Multi-technology characterizations were conducted to ascertain the properties of fabricated catalysts including X-ray diffraction(XRD), Fourier transform infrared spectrometry(FTIR), scanning electron microscopy(SEM) and H2 temperature programmed reduction (H2-TPR). In situ FTIR results demonstrated that various types of nitrates and chelating nitrite were generated on Ag-Ce xZr after introduction of NO. Besides, adding H2 could increase the concentration of bidentate nitrate and chelated bidentate nitrate dramatically, especially for Ag-Ce0.4Zr catalyst. Transient reaction between pre-adsorbing NO and C3H6/C3H6+H2 illuminated that the most active intermediate was chelating nitrite,which was promoted significantly by H2 participation. Furthermore, adding H2 improved the formation of organo-nitro(R-NO2), which was the key intermediate in C3H6-SCR. The reaction mechanism over Ag-Ce xZr catalysts was proposed at 200 °C as follows: nitric oxide(NO)+propene(C3H6)+hydrogen(H2)+oxygen(O2)→chelating nitrite(NO2 )+acrylate-type species(C xH yO z)→organo-nitro(R-NO2)→isocyanate(—NCO)+cyanide(—CN)→nitrogen(N2).

Keywords

NO / H2/C3H6-SCR / In situ Fourier transform infrared(FTIR) spectrometry

Cite this article

Download citation ▾
Jun Duan, Ling Zhao, Shengjun Gao, Yu Zhang. Reaction Mechanism of H2-Assisted C3H6-SCR over Ag-Ce xZr Catalyst as Investigated by In situ FTIR. Chemical Research in Chinese Universities, 2020, 36(5): 885-893 DOI:10.1007/s40242-020-0026-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan D L, Li X Y, Zhao Q D, Zhao J J, Tadé M, Liu S M. Catal., 2014, 309: 268.

[2]

Goula M A, Charisiou N D, Papageridis K N, Delimitis A, Papista E, Pachatouridou E. J. Environ. Chem. Eng., 201, 4: 1629.

[3]

Chaieb T, Delannoy L, Casale S, Louis C, Thomas C. Chem. Commun.(Camb.), 2015, 51: 796.

[4]

Burch R. Cat. Rev., 2011, 46: 271.

[5]

Luo J, Gao F, Kim D H, Peden C H F. Catal. Today, 2014, 231: 164.

[6]

Azis M M, Härelind H, Creaser D. Chem. Eng. J., 2015, 278: 394.

[7]

Miyadera T. Appl. Catal. B, 1993, 2: 199.

[8]

Shimizu K I, Satsuma A. Phys. Chem. Chem. Phys., 200, 8: 2677.

[9]

Yamaguchi A, Goto I, Wang Z M, Kumagai M. Stud. Surf. Sci. Catal., 1999, 121: 371.

[10]

Sazama P, Capek L, Drobna H, Sobalik Z, Dedecek J, Arve K. J. Catal., 2005, 232: 302.

[11]

Yu Y B, He H, Zhang X L, Deng H. Catal. Sci. Technol., 2014, 4: 1239.

[12]

Breen J P, Burch R. Top. Catal., 200, 39: 53.

[13]

Sazama P, Wichterlova B. Chem. Commun.(Camb.), 2005, 14: 4810.

[14]

Azis M M, Härelind H, Creaser D. Catal. Sci. Technol., 2015, 5: 296.

[15]

Xu G Y, Yu Y B, He H. J. Phys. Chem. C, 2018, 122: 670.

[16]

Kalamaras C M, Olympiou G G, Pârvulescu V I, Cojocaru B, Efstathiou A M. Appl. Catal. B, 2017, 206: 308.

[17]

Väliheikki A, Petallidou K C, Kalamaras C M, Kolli T, Huuhtanen M, Maunula T. Appl. Catal. B, 2014, 156/157: 72.

[18]

Finocchio E, Daturi M, Binet C, Lavalley J C, Blanchard G. Catal. Today, 1999, 52: 53.

[19]

Faqeeh A J, Ali T T, Basahel S N, Narasimharao K. Mol. Catal., 2018, 456: 10.

[20]

Zhao L K, Li C T, Li S H, Wang Y, Zhang J Y, Wang T, Zeng G M. Appl. Catal. B, 201, 198: 420.

[21]

Xu G Y, Ma J Z, Wang L, Xie W, Liu J J, Yu Y B, He H. Appl. Catal. B, 2019, 244: 909.

[22]

Pietrzyk P, Podolska K, Sojka Z. J. Phys. Chem. C, 2011, 11: 13008.

[23]

Azambre B, Atribak I, Bueno-LoPez A, GarciA-GarciA A. J. Phys. Chem. C, 2010, 114: 13300.

[24]

Jiang H X, Wang Q Y, Wang H Q, Chen Y F, Zhang M H. ACS Appl. Mater. Interfaces, 201, 8: 26817.

[25]

Bentrup U, Richter M, Fricke R. Appl. Catal. B, 2005, 55: 213.

[26]

Richter M. Appl. Catal. B, 2004, 51: 261.

[27]

Richter M, Abramova A, Bentrup U, Fricke R. J. Appl. Spectrosc., 2004, 71(3): 400.

[28]

Satsuma A, Shibata J, Wada A, Shinozaki Y, Hattori T. Stud. Surf. Sci. Catal., 2003, 145: 235.

[29]

Kameoka S, Kita K, Tanaka S I, Nobukawa T, Ito S I, Tomishige K. Catal. Lett., 2002, 79: 63.

[30]

Yu Y, Bian Z F, Song F J, Wang J, Zhong Q, Kawi S. Top. Catal., 2018, 61: 1514.

[31]

Meunier F C, Breen J P, Zuzaniuk V, Olsson M, Ross J R H. J. Catal., 1999, 187: 493.

[32]

Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S C, Li Z. ACS Catal., 2018, 8: 10446.

[33]

Amiridis M D, Zhang T J, Farrauto R J. Appl. Catal. B, 199, 10: 203.

[34]

Zhang Z X, Chen M X, Jiang Z, Shangguan W F. J. Environ. Sci., 2010, 22: 1441.

[35]

Halkides T I, Kondarides D I, Verykios X E. Catal. Today, 2002, 73: 213.

[36]

Fritz A, Pitchon V. Appl. Catal. B, 1997, 13: 1.

[37]

Parvulescu V I, Grange P, Delmon B. Catal. Today, 1998, 46: 233.

[38]

Yuan M H, Deng W Y, Dong S L, Li Q C, Zhao B T, Su Y X. Chem. Eng. J., 2018, 353: 839.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/