Amperometric Ascorbic Acid Sensor Based on Disposable Facial Tissues Derived Carbon Aerogels

Yanan Gu , Jingju Liu , Ming Zhou

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 139 -144.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 139 -144. DOI: 10.1007/s40242-019-9272-5
Article

Amperometric Ascorbic Acid Sensor Based on Disposable Facial Tissues Derived Carbon Aerogels

Author information +
History +
PDF

Abstract

In this study, the disposable facial tissues derived carbon aerogels(DFTs-CAs) were synthesized using disposable facial tissues as the raw material for fabricating a sensitive amperometric ascorbic acid(AA) sensor. The experimental results indicated that compared to glassy carbon electrode(GCE) and the popular carbon nanotubes modified GCE(CNTs/GCE), DFTs-CAs modified GCE(DFTs-CAs/GCE) exhibited better electrocatalytic activity(i.e., lower peak potential and higher peak current) for AA electrooxidation and higher analytical performance for AA determination(i.e., wider linear range, higher sensitivity and lower detection limit), which could be most likely due to the high density of defective sites and large specific surface area of DFTs-CAs. Especially, the DFTs-CAs/GCE was used for evaluating the AA level in real samples(i.e., medical injection dose, vitamin C tablets, fresh orange juice and human urine) and the results are satisfactory.

Keywords

Ascorbic acid / Biomass / Disposable facial tissues derived carbon aerogel / Electrochemical sensor

Cite this article

Download citation ▾
Yanan Gu, Jingju Liu, Ming Zhou. Amperometric Ascorbic Acid Sensor Based on Disposable Facial Tissues Derived Carbon Aerogels. Chemical Research in Chinese Universities, 2020, 36(1): 139-144 DOI:10.1007/s40242-019-9272-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Long W, Fu L. Fuller. Nanotub. Carbon Nanostruct., 2017, 25: 404.

[2]

Nishikimi M., Yagi K., Am. J. Clin. Nutr., 1991, 54, 1203S

[3]

Rafipour R, Kashanian S, Hashemi S, Shahabadi N, Omidfar K. Biotechnol. Appl. Biochem., 201, 63: 740.

[4]

Ping J, Wang Y, Wu J, Ying Y, Ji F. Food Chem., 2012, 135: 362.

[5]

Zhang W, Chai Y, Yuan R, Chen S, Han J, Yuan D. Anal. Chim. Acta, 2012, 756: 7.

[6]

Kaur B, Satpati B, Srivastava R. New J. Chem., 2015, 39: 1115.

[7]

Yang L, Liu D, Huang J, You T. Sensors Actuators B: Chem., 2014, 193: 166.

[8]

Lin K C, Yeh P C, Chen S M. Int. J. Electrochem. Sci, 2012, 7: 12752.

[9]

He W, Ding Y, Zhang W, Ji L, Zhang X, Yang F. J. Electroanal. Chem., 201, 775: 205.

[10]

Zhang L, Liu F, Sun X, Wei G F, Tian Y, Liu Z P, Huang R, Yu Y, Peng H. Anal. Chem., 2017, 89: 1831.

[11]

Zhou M, Guo S. ChemCatChem, 2015, 7: 2744.

[12]

Lee S, Bong S, Ha J, Kwak M, Park S K, Piao Y. Sensors Actuators B: Chem., 2015, 215: 62.

[13]

Wang D W, Li F, Liu M, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2008, 47: 373.

[14]

Hu B., Yu S. H., Wang K., Liu L., Xu X. W., Dalton Trans., 2008, 5414

[15]

Chen L, Zhang Y, Lin C, Yang W, Meng Y, Guo Y, Li M, Xiao D. J. Mater. Chem. A, 2014, 2: 9684.

[16]

Veeramani V, Madhu R, Chen S M, Lou B S, Palanisamy J, Vasantha V S. Sci Rep, 2015, 5: 10141.

[17]

Kim D, Kim J M, Jeon Y, Lee J, Oh J, Antink W H, Kim D, Piao Y. Sensors Actuators B: Chem., 2018, 259: 50.

[18]

Zhang W, Liu L, Li Y, Wang D, Ma H, Ren H, Shi Y, Han Y, Ye B C. Biosens. Bioelectron., 2018, 121: 96.

[19]

Sha T, Li X, Liu J, Sun M, Wang N, Bo X, Guo Y, Hu Z, Zhou M. Sensors Actuators B: Chem., 2018, 277: 195.

[20]

Wang N, Hei Y, Liu J, Sun M, Sha T, Hassan M, Bo X, Guo Y, Zhou M. Anal. Chim. Acta, 2019, 1047: 36.

[21]

Hou J, Cao C, Idrees F, Ma X. ACS Nano, 2015, 9: 2556.

[22]

Hei Y, Li X, Zhou X, Liu J, Sun M, Sha T, Xu C, Xue W, Bo X, Zhou M. Anal. Chim. Acta, 2018, 1003: 16.

[23]

Xia Y, Yang Z, Mokaya R. Chem. Mater., 200, 18: 140.

[24]

Ferrari A C, Robertson J. Phys. Rev. B, 2000, 61: 14095.

[25]

Georgakilas V, Vulgaris D, Vazquez E, Prato M, Guldi D M, Kukovecz A, Kuzmany H. J. Am. Chem. Soc., 2002, 124: 14318.

[26]

Liu Y, Huang J, Hou H, You T. Electrochem. Commun., 2008, 10: 1431.

[27]

Bordjiba T, Mohamedi M, Dao L H. Adv. Mater., 2008, 20: 815.

[28]

Jia N, Wang Z, Yang G, Shen H, Zhu L. Electrochem. Commun., 2007, 9: 233.

[29]

Pimenta M, Dresselhaus G, Dresselhaus M S, Cancado L, Jorio A, Saito R. Phys. Chem. Chem. Phys., 2007, 9: 1276.

[30]

Zeinu K M, Hou H, Liu B, Yuan X, Huang L, Zhu X, Hu J, Yang J, Liang S, Wu X. J. Mater. Chem. A, 201, 4: 13967.

[31]

Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A Jr. Carbon, 2009, 47: 145.

[32]

Li X, Wang Y, Liu J, Sun M, Bo X, Wang H L, Zhou M. Electrochem. Commun., 2017, 82: 139.

[33]

Wang H, Bo X, Guo L. Sensors Actuators B: Chem., 2014, 192: 181.

[34]

Zhang X, Zhang Y C, Ma L X. Sensors Actuators B: Chem., 201, 227: 488.

[35]

Qi S, Zhao B, Tang H, Jiang X. Electrochim. Acta, 2015, 161: 395.

[36]

Wu D, Li Y, Zhang Y, Wang P, Wei Q, Du B. Electrochim. Acta, 2014, 116: 244.

[37]

Zhang Y, Nsabimana A, Zhu L, Bo X, Han C, Li M, Guo L. Talanta, 2014, 129: 55.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/