Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food

Jin’en Xiong , Shuang Li , Yi Li , Yingli Chen , Yu Liu , Junlan Gan , Jiahui Ju , Yaoling Xian , Xiaohui Xiong

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 787 -794.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 787 -794. DOI: 10.1007/s40242-019-9257-4
Article

Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food

Author information +
History +
PDF

Abstract

A biosensor based on self-assembled ssDNA(aptamer) and polyethylene glycol functionalized graphene oxide(GO-PEG) has been designed for sensing profenofos in food. The sensor has employed the fluorescence “on/off” switching strategy in a single step in homogeneous solution. Compared to traditional detection methods, the strategy proposed here is simple, convenient, fast and sensitive. Furthermore, compared with the general aptamer-GO structure, this aptamer-GO-PEG structure is in possession of a better detection performance, which is largely attributed to the improvement of the biocompatibility and the adjustment of the adsorption capacity of GO by grafting the blocking agent PEG onto the surface of GO. Additionally, the improved biocompatibility of GO shows better stability in salt solutions and physiological solutions, which is more conducive to its practical application in foods. In this project, profenofos had been detected with the proposed strategy, and the limit of detection has been controlled to be 0.21 ng/mL. This aptasensing assay has been applied to determining profenofos in (spiked)tap water, cabbage and milk with the recovery values ranging from 93.1% to 108.5%, from 90.8% to 113.2% and from 105.9% to 114.2%, respectively.

Keywords

Aptamer / Graphene oxide / Polyethylene glycol / Profenofos

Cite this article

Download citation ▾
Jin’en Xiong, Shuang Li, Yi Li, Yingli Chen, Yu Liu, Junlan Gan, Jiahui Ju, Yaoling Xian, Xiaohui Xiong. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food. Chemical Research in Chinese Universities, 2020, 36(5): 787-794 DOI:10.1007/s40242-019-9257-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo J, Jia N, Shi H Y, Wang M H. Environ. Sci. Technol., 2011, 34(6): 16.

[2]

Zhang C Z, Wang L, Tu Z, Sun X, He Q H, Lei Z J, Xu C X, Liu Y, Zhang X, Yang J Y, Liu X J, Xu Y. Biosens. Bioelectron., 2014, 55: 216.

[3]

Åkerblom N. Agricultural Pesticide Toxicity to Aquatic Organisms: a Literature Review, 2004, Uppsala: Sveriges Lantbruks University

[4]

Fukuto T R. Environ. Health Persp., 1990, 87: 245.

[5]

Aceña J, Stampachiacchiere S, Pérez S, Barceló D. Anal. Bioanal. Chem., 2015, 407(21): 6289.

[6]

Chu X G, Hu X Z, Yao H Y. J. Chromatogr. A, 2005, 1063(1/2): 201.

[7]

Frenich A G, Bolanos P P, Vidal J L M. J. Chromatogr. A, 2007, 1153(1/2): 194.

[8]

Qu L J, Zhang H, Zhu J H, Yang G S, Aboul-Eneincd H Y. Food Chem., 2010, 122(1): 327.

[9]

Mahajan R, Chatterjee S. Environ. Monit. Assess, 2018, 190(6): 327.

[10]

Liang H C, Bilon N, Hay M T. Water Environ. Res., 2015, 87(10): 1923.

[11]

He J, Liu Y, Fan M, Liu X J. J. Agr. Food Chem., 2011, 59(5): 1582.

[12]

Tang Z W, Shangguan D H, Wang K, Shi H, Sefah K, Mallikratchy P, Chen H W, Li Y, Tan W H. Anal. Chem., 2007, 79(13): 4900.

[13]

Nimjee S M, Rusconi C P. Annu. Rev. Med., 2005, 56: 555.

[14]

Hayat A, Barthelmebs L, Marty J L. Sensor Actuat. B: Chem., 2012, 171: 810.

[15]

Song S P, Wang L H, Li J, Fan C H, Zhao J L. Trac-Trend Anal. Chem., 2008, 27(2): 108.

[16]

Chen X, Hai X, Wang J. Anal. Chim. Acta, 201, 922: 1.

[17]

Gao N N, Gao F, He S Y, Zhu Q H, Huang J F, Tanaka H, Wang Q X. Anal. Chim. Acta, 2017, 951: 58.

[18]

Sreejith S, Ma X, Zhao Y. J. Am. Chem. Soc., 2012, 134(42): 17346.

[19]

Wang Y, Li Z H, Weber T J, Hu D H, Lin C T, Li J H, Lin Y H. Anal. Chem., 2013, 85(14): 6775.

[20]

Wang Y, Li Z H, Hu D H, Lin C T, Li J H, Lin Y H. J. Am. Chem. Soc., 2010, 132(27): 9274.

[21]

Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Ed., 2009, 48(26): 4785.

[22]

Wang H B, Zhang Q, Chu X, Chen T T, Ge J, Yu R Q. Angew. Chem. Int. Ed., 2011, 50(31): 7065.

[23]

Gao L, Lian C Q, Zhou Y, Yan L R, Li Q, Zhang C X, Chen L, Chen K P. Biosens. Bioelectron., 2014, 60: 22.

[24]

Ha N R, Jung I P, La I J, Jung H S, Yoon M Y. Sci. Rep. UK, 2017, 7: 40305.

[25]

Wang H, Chen H, Huang Z P, Li T D, Deng A M, Kong J L. Talanta, 2018, 184: 219.

[26]

Cheng X, Cen Y, Xu G H, Wei F D, Shi M L, Xu X M, Sohail M H, Hu Q. Microchim. Acta, 2018, 185(2): 144.

[27]

Song Y, Li W K, Duan Y F, Li Z J, Deng L. Biosens. Bioelectron., 2014, 55: 400.

[28]

Wu S J, Duan N, Ma X Y, Xia Y, Wang H X, Wang Z P, Zhang Q. Anal. Chem., 2012, 84: 6263.

[29]

Xing X J, Liu X G, He Y, Luo Q Y, Tang H W, Pang D W. Biosens. Bioelectron., 2012, 37: 61.

[30]

Bai Y F, Feng F, Zhao L, Chen Z Z, Wang H Y, Duan Y L. Analyst, 2014, 139: 1843.

[31]

Cao L L, Cheng L W, Zhang Z Y, Wang Y, Zhang X X, Chen H, Liu B H, Zhang S, Kong J L. Lab Chip., 2012, 12: 4864.

[32]

Kushwaha H S, Sao R, Vaish R. J. Appl. Phys., 2014, 116: 34701.

[33]

He Y, Lin Y, Tang H, Pang D. Nano, 2012, 4: 2054.

[34]

Gao L, Li Q, Li R Q, Yan L R, Zhou Y, Chen K P, Shi H X. Nano, 2015, 7: 10903.

[35]

Chang H X, Tang L H, Wang Y, Jiang J H, Li J H. Anal. Chem., 2010, 82: 2341.

[36]

Yang L M, Li J, Pan W, Wang H Y, Li N, Tang B. Chem. Commun., 2018, 54(29): 3656.

[37]

Yang L M, Liu B, Wang M M, Li J, Pan W, Gao X N, Li N, Tang B. ACS Appl. Mater. Interfaces, 2018, 10(8): 6982.

[38]

Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2): 101.

[39]

Huang J F, Chen H, Niu W B, Fam D W H, Palaniappan A, Larisika M, Faulkner S H, Nowak C, Nimmo M A, Liedberg B, Tok A I Y. RSC Adv., 2015, 5(49): 39245.

[40]

Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Adv. Mater., 2010, 22(40): 4467.

[41]

Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Nano Lett., 2010, 10(4): 1144.

[42]

Youn H, Lee K, Her J, Jeon J, Mok J, So J, Shin S, Ban C. Sci. Rep. UK, 2019, 9(1): 7659.

[43]

Wang L, Liu X J, Zhang Q, Zhang C Z, Liu Y, Tu K, Tu J. Biotechnol. Lett., 2012, 34(5): 869.

[44]

Zhang C M, Wang L W, Zhai T L, Wang X C, Dan Y, Turng L S. J. Mech. Behav. Biomed., 201, 53: 403.

[45]

Tang X M, Li X T, Ma D L, Lu L H, Qu B H. Talanta, 2018, 189: 599.

[46]

Liu Z P, Tian C S, Lu L H, Su X G. RSC Adv., 201, 6(12): 10205.

[47]

Yang X Y, Zhang X Y, Liu Z F, Ma Y F, Huang Y, Chen Y S. J. Phys. Chem. C, 2008, 112(45): 17554.

[48]

Li F, Huang Y, Yang Q, Zhong Z T, Li D, Wang L H, Song S P, Fan C H. Nanoscale, 2010, 2(6): 1021.

[49]

Zhang M, Yin B C, Tan W, Ye B C. Biosens. Bioelectron., 2011, 26(7): 3260.

[50]

He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H. Adv. Funct. Mater., 2010, 20(3): 453.

[51]

Pang S, Labuza T P, He L. Analyst, 2014, 139(8): 1895.

[52]

Zhang C, Wang L, Tu Z, Sun X, He Q, Lei Z, Xu C, Liu Y, Zhang X, Yang J, Liu X, Xu Y. Biosens. Bioelectron., 2014, 55: 216.

[53]

Li C, Zhang G P, Wu S Q, Zhang Q C. Anal. Chim. Acta, 2018, 1020: 116.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/