Framework Nucleic Acids for Cell Imaging and Therapy

Zhilei Ge , Qian Li , Chunhai Fan

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 1 -9.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 1 -9. DOI: 10.1007/s40242-019-9249-4
Review

Framework Nucleic Acids for Cell Imaging and Therapy

Author information +
History +
PDF

Abstract

Over the past decade, structural DNA nanotechnology has been well developed to be a promising and powerful technique to generate various nanostructures with programmability, spatial organization and biocompatibility. With the advent of computer-aided tools, framework nucleic acids have been employed in a series of biomedical applications, ranging from biosensing, bioimaging, diagnosis, to therapeutics. In this review, we summarized recent advances in the construction of precisely assembled DNA nanostructures, and DNA-engineered biomimetics. We also outlined the challenges and opportunities for the translational applications of framework nucleic acids.

Keywords

DNA nanotechnology / Framework nucleic acid / DNA origami / Therapy / Cellular imaging

Cite this article

Download citation ▾
Zhilei Ge, Qian Li, Chunhai Fan. Framework Nucleic Acids for Cell Imaging and Therapy. Chemical Research in Chinese Universities, 2020, 36(1): 1-9 DOI:10.1007/s40242-019-9249-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seeman N C. J. Theor. Biol., 1982, 99(2): 237.

[2]

Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305(5937): 829.

[3]

Seeman N C. Nature, 2003, 421(6921): 427.

[4]

Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310(5754): 1661.

[5]

Rothemund P W K. Nature, 200, 440(7082): 297.

[6]

Yang F, Li Q, Wang L, Zhang G J, Fan C. ACS Sensors, 2018, 3(5): 903.

[7]

Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X, Fan C. Angew. Chem. Int. Ed., 2018, 57(24): 7131.

[8]

Ge Z, Gu H, Li Q, Fan C. J. Am. Chem. Soc., 2018, 140(51): 17808.

[9]

Lu N, Pei H, Ge Z L, Simmons C R, Yan H, Fan C H. J. Am. Chem. Soc., 2012, 134(32): 13148.

[10]

Ye D, Zuo X, Fan C. Annu. Rev. Anal. Chem., 2018, 11(1): 171.

[11]

Yang F, Zuo X L, Fan C H, Zhang X E. Natl. Sci. Rev., 2018, 5(5): 740.

[12]

Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Oliveira C L P, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459(7243): 73.

[13]

Chen J H, Seeman N C. Nature, 1991, 350(6319): 631.

[14]

Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7250): 1154.

[15]

Gu H Z, Chao J, Xiao S J, Seeman N C. Nature, 2010, 465(7295): 202.

[16]

Wei B, Dai M J, Yin P. Nature, 2012, 485(7400): 623.

[17]

Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H. Science, 2003, 301(5641): 1882.

[18]

Yan H, Zhang X, Shen Z, Seeman N C. Nature, 2002, 415(6867): 62.

[19]

Pei H, Zuo X L, Zhu D, Huang Q, Fan C H. Acc. Chem. Res., 2014, 47(2): 550.

[20]

Chen N, Li J, Song H Y, Chao J, Huang Q, Fan C H. Acc. Chem. Res., 2014, 47(6): 1720.

[21]

Zhang F, Jiang S X, Wu S Y, Li Y L, Mao C D, Liu Y, Yan H. Nat. Nanotech., 2015, 10(9): 779.

[22]

Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332(6027): 342.

[23]

Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7245): 414.

[24]

Qi X D, Zhang F, Su Z M, Jiang S X, Han D R, Ding B Q, Liu Y, Chiu W, Yin P, Yan H. Nat. Commun., 2018, 9: 4579.

[25]

Han D R, Qi X D, Myhrvold C, Wang B, Dai M J, Jiang S X, Bates M, Liu Y, An B, Zhang F, Yan H, Yin P. Science, 2017, 358(6369): eaao2648.

[26]

Cutler J I, Auyeung E, Mirkin C A. J. Am. Chem. Soc., 2012, 134(3): 1376.

[27]

Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 199, 382(6592): 607.

[28]

Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz P G. Nature, 199, 382(6592): 609.

[29]

Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Science, 2011, 334(6053): 204.

[30]

Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A. Nature, 2014, 505(7481): 73.

[31]

Mastroianni A J, Claridge S A, Alivisatos A P. J. Am. Chem. Soc., 2009, 131(24): 8455.

[32]

Chao J, Wang J, Wang F, Ouyang X, Kopperger E, Liu H, Li Q, Shi J, Wang L, Hu J, Wang L, Huang W, Simmel F C, Fan C. Nature Materials, 2019, 18(3): 273.

[33]

Zhang H L, Chao J, Pan D, Liu H J, Qiang Y, Liu K, Cui C J, Chen J H, Huang Q, Hu J, Wang L H, Huang W, Shi Y Y, Fan C H. Nat. Commun., 2017, 8: 14738.

[34]

Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5(11): 8783.

[35]

Walsh A S, Yin H F, Erben C M, Wood M J A, Turberfield A J. ACS Nano, 2011, 5(7): 5427.

[36]

He L, Lu D Q, Liang H, Xie S T, Zhang X B, Liu O L, Yuan Q, Tan W H. J. Am. Chem. Soc., 2018, 140(1): 258.

[37]

Liu W Y, Halverson J, Tian Y, Tkachenko A V, Gang O. Nat. Chem., 201, 8(9): 867.

[38]

Jiang D, Ge Z, Im H J, England C G, Ni D, Hou J, Zhang L, Kutyreff C J, Yan Y, Liu Y, Cho S Y, Engle J W, Shi J, Huang P, Fan C, Yan H, Cai W. Nat. Biomed. Eng., 2018, 2(11): 865.

[39]

Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc. Natl. Acad. Sci. USA, 2013, 110(20): 7998.

[40]

Yang Y R, Liu Y, Yan H. Bioconj. Chem., 2015, 26(8): 1381.

[41]

Shelby M L, Lestrange P J, Jackson N E, Haldrup K, Mara M W, Stickrath A B, Zhu D, Lemke H T, Chollet M, Hoffman B M, Li X, Chen L X. J. Am. Chem. Soc., 201, 138(28): 8752.

[42]

Chhabra R, Sharma J, Liu Y, Yan H. Nano Lett., 200, 6(5): 978.

[43]

Zhang J, Liu Y, Ke Y, Yan H. Nano Lett., 200, 6(2): 248.

[44]

Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C. Nature, 2018, 559(7715): 593.

[45]

He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452(7184): 198.

[46]

Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22(42): 4754.

[47]

Wang Y, Mueller J E, Kemper B, Seeman N C. Biochemistry, 1991, 30(23): 5667.

[48]

Fu T J, Seeman N C. Biochemistry, 1993, 32(13): 3211.

[49]

Tian C, Zhang C. Methods Mol. Biol., 2017, 1500: 11.

[50]

Zhang C, Ko S H, Su M, Leng Y, Ribbe A E, Jiang W, Mao C. J. Am. Chem. Soc., 2009, 131(4): 1413.

[51]

Zhang C, He Y, Su M, Ko S H, Ye T, Leng Y, Sun X, Ribbe A E, Jiangh W, Mao C. Faraday Discuss., 2009, 143: 221. discussion 265

[52]

Hong F, Zhang F, Liu Y, Yan H. Chem. Rev., 2017, 117(20): 12584.

[53]

Liu L, You Y, Zhou K, Guo B, Cao Z, Zhao Y, Wu H C. Angew. Chem. Int. Ed., 2019, 58: 14929.

[54]

Maingi V, Burns J R, Uusitalo J J, Howorka S, Marrink S J, Sansom M S P. Nat. Commun., 2017, 8: 14784.

[55]

Shao Y, Jia H, Cao T, Liu D. Acc. Chem. Res., 2017, 50(4): 659.

[56]

English M A, Soenksen L R, Gayet R V, de Puig H, Angenent-Mari N M, Mao A S, Nguyen P Q, Collins J J. Science, 2019, 365(6455): 780.

[57]

Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86(4): 2124.

[58]

Ge Z, Pei H, Wang L, Song S, Fan C. Sci. Chi. Chem., 2011, 54(8): 1273.

[59]

Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew. Chem. Int. Ed., 2015, 54(7): 2151.

[60]

Wen Y, Pei H, Shen Y, Xi J, Lin M, Lu N, Shen X, Li J, Fan C. Sci. Rep., 2012, 2: 867.

[61]

Ge Z, Su Z, Simmons C R, Li J, Jiang S, Li W, Yang Y, Liu Y, Chiu W, Fan C, Yan H. ACS Appl. Mater. Interfaces, 2019, 11(15): 13874.

[62]

Ge Z, Fu J, Liu M, Jiang S, Andreoni A, Zuo X, Liu Y, Yan H, Fan C. ACS Appl. Mater. Interfaces, 2019, 11(15): 13881.

[63]

Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C. J. Am. Chem. Soc., 2012, 134: 11876.

[64]

Zhao Z, Liu Y, Yan H. Nano Lett., 2011, 11: 2997.

[65]

Tian Y, Zhang Y, Wang T, Xin H L, Li H, Gang O. Nature Materials, 201, 15: 654.

[66]

Langer R. Nature, 1998, 392: 5.

[67]

Liang L, Li J, Li Q, Huang Q, Shi J Y, Yan H, Fan C H. Angew. Chem. Int. Ed., 2014, 53(30): 7745.

[68]

Wiraja C, Zhu Y, Lio D C S, Yeo D C, Xie M, Fang W, Li Q, Zheng M, van Steensel M, Wang L, Fan C, Xu C. Nat. Commun., 2019, 10(1): 1147.

[69]

Ko S, Liu H, Chen Y, Mao C. Biomacromolecules, 2008, 9(11): 3039.

[70]

Sefah K, Shangguan D, Xiong X, O’Donoghue M B, Tan W. Nat. Protoc., 2010, 5(6): 1169.

[71]

Varkouhi A K, Scholte M, Storm G, Haisma H J. J. Control Release, 2011, 151(3): 220.

[72]

Howorka S. Science, 201, 352(6288): 890.

[73]

Burns J R, Seifert A, Fertig N, Howorka S. Nat. Nanotech., 201, 11(2): 152.

[74]

Burns J R, Stulz E, Howorka S. Nano Lett., 2013, 13(6): 2351.

[75]

Langecker M, Arnaut V, Martin T G, List J, Renner S, Mayer M, Dietz H, Simmel F C. Science, 2012, 338(6109): 932.

[76]

Czogalla A, Kauert D J, Franquelim H G, Uzunova V, Zhang Y, Seidel R, Schwille P. Angew. Chem. Int. Ed. Engl., 2015, 54(22): 6501.

[77]

Burns J R, Göpfrich K, Wood J W, Thacker V V, Stulz E, Keyser U F, Howorka S. Angew. Chem. Int. Ed. Engl., 2013, 52(46): 12069.

[78]

Johnson-Buck A, Jiang S, Yan H, Walter N G. ACS Nano, 2014, 8(6): 5641.

[79]

Johnson-Buck A, Jiang S, Yan H, Walter N G. ACS Nano, 2014, 8: 5641.

[80]

Xie N, Liu S, Yang X, He X, Huang J, Wang K. Analyst, 2017, 142: 3322.

[81]

Hu Q, Li H, Wang L, Gu H, Fan C. Chem. Rev., 2018, 119(10): 6459.

[82]

Hu Q, Wang S, Wang L, Gu H, Fan C. Advanced Healthcare Materials, 2018, 20: e1701153.

[83]

Doherty G J, McMahon H T. Annu. Rev. Biochem., 2009, 78: 857.

[84]

Meng M, Gan Z X, Zhang J, Liu K L, Wang L H, Li S F, Yao Y, Zhu Y, Li J. Physica Status Solidi B-Basic Solid State Physics, 2017, 254(7): 1700011.

[85]

Banerjee A, Berezhkovskii A, Nossal R. Phys. Biol., 201, 13(1): 016005.

[86]

McMahon H T, Boucrot E. Nat. Rev. Mol. Cell Biol., 2011, 12(8): 517.

[87]

Peters P J, Mironov A, Peretz D, van Donselaar E, Leclerc E, Erpel S, de Armond S J, Burton D R, Williamson R A, Vey M, Prusiner S B. J. Cell Biol., 2003, 162(4): 703.

[88]

Nabi I R, Le P U. J. Cell Biol., 2003, 161(4): 673.

[89]

Schaffert D H, Okholm A H, Sørensen R S, Nielsen J S, Tørring T, Rosen C B, Kodal A L, Mortensen M R, Gothelf K V, Kjems J. Small, 201, 12(19): 2634.

[90]

Lee H, Lytton-Jean A K R, Chen Y, Love K T, Park A I, Karagiannis E D, Sehgal A, Querbes W, Zurenko C S, Jayaraman M, Peng C G, Charisse K, Borodovsky A, Manoharan M, Donahoe J S, Truelove J, Nahrendorf M, Langer R, Anderson D G. Nat. Nanotech., 2012, 7(6): 389.

[91]

Li S P, Jiang Q, Liu S L, Zhang Y L, Tian Y H, Song C, Wang J, Zou Y G, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G B, Nie G J, Yan H, Ding B Q, Zhao Y L. Nat. Biotechnol., 2018, 36(3): 258.

[92]

Schwarzenbach H, Hoon D S, Pantel K. Nat. Rev. Cancer, 2011, 11(6): 426.

[93]

Choi H M T, Chang J Y, Trinh L A, Padilla J E, Fraser S E, Pierce N A. Nat. Biotechnol., 2010, 28(11): 1208.

[94]

Tay C Y, Yuan L, Leong D T. ACS Nano, 2015, 9(5): 5609.

[95]

Zhou W, Li D, Xiong C, Yuan R, Xiang Y. ACS Appl. Mater, Interfaces, 201, 8(21): 13303.

[96]

Li S, Xu L, Ma W, Wu X, Sun M, Kuang H, Wang L, Kotov N A, Xu C. J. Am. Chem. Soc., 201, 138(1): 306.

[97]

Thekkan Shareefa, Jani Maulik S., Cui Chang, Dan Krishna, Zhou Guolin, Becker Lev, Krishnan Yamuna. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nature Chemical Biology, 2018, 15(12): 1165-1172.

[98]

Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X. Anal. Chem., 2014, 86: 7843.

[99]

Zhou W, Liang W, Li D, Yuan R, Xiang Y. Biosens. Bioelectron., 201, 85: 573.

[100]

Dan K, Veetil A T, Chakraborty K, Krishnan Y. Nat. Nanotech., 2019, 14(3): 252.

[101]

Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A, Ryan P, Balis U J, Tompkins R G, Haber D A, Toner M. Nature, 2007, 450(7173): 1235.

[102]

Wen C Y, Wu L L, Zhang Z L, Liu Y L, Wei S Z, Hu J, Tang M, Sun E Z, Gong Y P, Yu J, Pang D W. ACS Nano, 2014, 8(1): 941.

[103]

Zhao W, Cui C H, Bose S, Guo D, Shen C, Wong W P, Halvorsen K, Farokhzad O C, Teo G S, Phillips J A, Dorfman D M, Karnik R, Karp J M. Proc. Natl. Acad. Sci., USA, 2012, 109(48): 19626.

[104]

Sheng W, Chen T, Tan W, Fan Z H. ACS Nano, 2013, 7(8): 7067.

[105]

Qu X, Wang S, Ge Z, Wang J, Yao G, Li J, Zuo X, Shi J, Song S, Wang L, Li L, Pei H, Fan C. J. Am. Chem. Soc., 2017, 139(30): 10176.

[106]

Li S, Chen N, Zhang Z, Wang Y. Biomaterials, 2013, 34(2): 460.

[107]

Seferos D S, Giljohann D A, Hill H D, Prigodich A E, Mirkin C A. J. Am. Chem. Soc., 2007, 129: 15477.

[108]

Halo T L, McMahon K M, Angeloni N L, Xu Y, Wang W, Chinen A B, Malin D, Strekalova E, Cryns V L, Cheng C, Mirkin C A, Thaxton C S. Proc. Natl. Acad. Sci. USA, 2014, 111(48): 17104.

[109]

Briley W E, Bondy M H, Randeria P S, Dupper T J, Mirkin C A. Proc. Natl. Acad. Sci. USA, 2015, 112(31): 9591.

[110]

Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Angew. Chem. Int. Ed., 2009, 48(46): 8670.

[111]

Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem. Int. Ed., 2012, 51(36): 9020.

[112]

Peng P, Du Y, Zheng J, Wang H, Li T. Angew. Chem. Int. Ed., 2019, 58: 1648.

[113]

Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V, Prakash V, Grazon C, Nadal B, Maiti P K, Johannes L, Dubertret B, Krishnan Y. Nat. Nanotechnol., 201, 11(12): 1112.

[114]

Wu C, Chen T, Han D, You M, Peng L, Cansiz S, Zhu G, Li C, Xiong X, Jimenez E, Yang C J, Tan W. ACS Nano, 2013, 7(7): 5724.

[115]

Saha S, Prakash V, Halder S, Chakraborty K, Krishnan Y. Nat. Nanotech., 2015, 10(7): 645.

[116]

Modi S, Nizak C, Surana S, Halder S, Krishnan Y. Nat. Nanotechnol., 2013, 8(6): 459.

[117]

Surana S, Bhat J M, Koushika S P, Krishnan Y. Nat. Commun., 2011, 2: 340.

[118]

Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang Z G, Zou G, Liang X, Yan H, Ding B. J. Am. Chem. Soc., 2012, 134: 13396.

[119]

Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. Nano Lett., 2012, 12: 4254.

[120]

Sun W, Ji W, Hall J M, Hu Q, Wang C, Beisel C L, Gu Z. Angew. Chem. Int. Ed., 2015, 54: 12029.

[121]

Tian J, Ding L, Ju H, Yang Y, Li X, Shen Z, Zhu Z, Yu J S, Yang C J. Angew. Chem. Int. Ed., 2014, 53: 9544.

[122]

Bagalkot V, Farokhzad O C, Langer R, Jon S. Angew. Chem. Int. Ed. Engl., 200, 45(48): 8149.

[123]

Yuan Q, Zhang Y, Chen T, Lu D, Zhao Z, Zhang X, Li Z, Yan C H, Tan W. ACS Nano, 2012, 6(7): 6337.

[124]

Zhang P, He Z, Wang C, Chen J, Zhao J, Zhu X, Li C Z, Min Q, Zhu J J. ACS Nano, 2015, 9(1): 789.

[125]

Huang F, Liao W C, Sohn Y S, Nechushtai R, Lu C H, Willner I. J. Am. Chem. Soc., 201, 138(28): 8936.

[126]

Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. J. Am. Chem. Soc., 2014, 136(42): 14722.

[127]

Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv. Funct. Mater., 2018, 28(8): 1705137.

[128]

Chen W H, Yu X, Liao W C, Sohn Y S, Cecconello A, Kozell A, Nechushtai R, Willner I. Adv. Funct. Mater., 2017, 27(37): 1702102.

[129]

Liu H, Kwong B, Irvine D J. Angew. Chem. Int. Ed. Engl., 2011, 50(31): 7052.

[130]

Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. ACS Nano, 2012, 6(7): 5931.

[131]

Liu X W, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. Nano Lett., 2012, 12(8): 4254.

[132]

Xiong X, Liu H, Zhao Z, Altman M B, Lopez-Colon D, Yang C J, Chang L J, Liu C, Tan W. Angew. Chem. Int. Ed., 2013, 52(5): 1472.

[133]

Celli J P, Spring B Q, Rizvi I, Evans C L, Samkoe K S, Verma S, Pogue B W, Hasan T. Chem. Rev., 2010, 110(5): 2795.

[134]

Wang K, You M, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang C J, Tan W. Angew. Chem. Int. Ed., 2011, 50(27): 6098.

[135]

You M, Peng L, Shao N, Zhang L, Qiu L, Cui C, Tan W. J. Am. Chem. Soc., 2014, 136(4): 1256.

[136]

You M, Zhu G, Chen T, Donovan M J, Tan W. J. Am. Chem. Soc., 2015, 137(2): 667.

[137]

Naldini L. Nature, 2015, 526(7573): 351.

[138]

Kotterman M A, Schaffer D V. Nat. Rev. Genet., 2014, 15(7): 445.

[139]

Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Nature, 1998, 391(6669): 806.

[140]

Zamore P D, Tuschl T, Sharp P A, Bartel D P. Cell, 2000, 101(1): 25.

[141]

Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Nature, 2001, 411(6836): 494.

[142]

Brummelkamp T R, Bernards R, Agami R. Science, 2002, 296(5567): 550.

[143]

Hong C A, Eltoukhy A A, Lee H, Langer R, Anderson D G, Nam Y S. Angew. Chem. Int. Ed., 2015, 54(23): 6740.

[144]

Li J, Zheng C, Cansiz S, Wu C, Xu J, Cui C, Liu Y, Hou W, Wang Y, Zhang L, Teng I T, Yang H H, Tan W. J. Am. Chem. Soc., 2015, 137(4): 1412.

[145]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. Science, 2012, 337(6096): 816.

[146]

Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Science, 2013, 339(6121): 819.

[147]

Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. Science, 2013, 339(6121): 823.

[148]

Huang Jiaguo, Li Jingchao, Lyu Yan, Miao Qingqing, Pu Kanyi. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nature Materials, 2019, 18(10): 1133-1143.

[149]

Granger D N, Kvietys P R. Redox. Biol., 2015, 6: 524.

[150]

Boor P, Ostendorf T, Floege J. Nat. Rev. Nephrol., 2010, 6(11): 643.

[151]

Praetorius F, Kick B, Behler K L, Honemann M N, Weuster-Botz D, Dietz H. Nature, 2017, 552(7683): 84.

[152]

Agarwal N P, Matthies M, Gür F N, Osada K, Schmidt T L. Angew. Chem. Int. Ed., 2017, 56(20): 5460.

[153]

Ponnuswamy N, Bastings M M C, Nathwani B, Ryu J H, Chou L Y T, Vinther M, Li W A, Anastassacos F M, Mooney D J, Shih W M. Nat. Commun., 2017, 8: 15654.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/