PDF
Abstract
Over the past decade, structural DNA nanotechnology has been well developed to be a promising and powerful technique to generate various nanostructures with programmability, spatial organization and biocompatibility. With the advent of computer-aided tools, framework nucleic acids have been employed in a series of biomedical applications, ranging from biosensing, bioimaging, diagnosis, to therapeutics. In this review, we summarized recent advances in the construction of precisely assembled DNA nanostructures, and DNA-engineered biomimetics. We also outlined the challenges and opportunities for the translational applications of framework nucleic acids.
Keywords
DNA nanotechnology
/
Framework nucleic acid
/
DNA origami
/
Therapy
/
Cellular imaging
Cite this article
Download citation ▾
Zhilei Ge, Qian Li, Chunhai Fan.
Framework Nucleic Acids for Cell Imaging and Therapy.
Chemical Research in Chinese Universities, 2020, 36(1): 1-9 DOI:10.1007/s40242-019-9249-4
| [1] |
Seeman N C. J. Theor. Biol., 1982, 99(2): 237.
|
| [2] |
Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305(5937): 829.
|
| [3] |
Seeman N C. Nature, 2003, 421(6921): 427.
|
| [4] |
Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310(5754): 1661.
|
| [5] |
Rothemund P W K. Nature, 200, 440(7082): 297.
|
| [6] |
Yang F, Li Q, Wang L, Zhang G J, Fan C. ACS Sensors, 2018, 3(5): 903.
|
| [7] |
Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X, Fan C. Angew. Chem. Int. Ed., 2018, 57(24): 7131.
|
| [8] |
Ge Z, Gu H, Li Q, Fan C. J. Am. Chem. Soc., 2018, 140(51): 17808.
|
| [9] |
Lu N, Pei H, Ge Z L, Simmons C R, Yan H, Fan C H. J. Am. Chem. Soc., 2012, 134(32): 13148.
|
| [10] |
Ye D, Zuo X, Fan C. Annu. Rev. Anal. Chem., 2018, 11(1): 171.
|
| [11] |
Yang F, Zuo X L, Fan C H, Zhang X E. Natl. Sci. Rev., 2018, 5(5): 740.
|
| [12] |
Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Oliveira C L P, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459(7243): 73.
|
| [13] |
Chen J H, Seeman N C. Nature, 1991, 350(6319): 631.
|
| [14] |
Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7250): 1154.
|
| [15] |
Gu H Z, Chao J, Xiao S J, Seeman N C. Nature, 2010, 465(7295): 202.
|
| [16] |
Wei B, Dai M J, Yin P. Nature, 2012, 485(7400): 623.
|
| [17] |
Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H. Science, 2003, 301(5641): 1882.
|
| [18] |
Yan H, Zhang X, Shen Z, Seeman N C. Nature, 2002, 415(6867): 62.
|
| [19] |
Pei H, Zuo X L, Zhu D, Huang Q, Fan C H. Acc. Chem. Res., 2014, 47(2): 550.
|
| [20] |
Chen N, Li J, Song H Y, Chao J, Huang Q, Fan C H. Acc. Chem. Res., 2014, 47(6): 1720.
|
| [21] |
Zhang F, Jiang S X, Wu S Y, Li Y L, Mao C D, Liu Y, Yan H. Nat. Nanotech., 2015, 10(9): 779.
|
| [22] |
Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332(6027): 342.
|
| [23] |
Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7245): 414.
|
| [24] |
Qi X D, Zhang F, Su Z M, Jiang S X, Han D R, Ding B Q, Liu Y, Chiu W, Yin P, Yan H. Nat. Commun., 2018, 9: 4579.
|
| [25] |
Han D R, Qi X D, Myhrvold C, Wang B, Dai M J, Jiang S X, Bates M, Liu Y, An B, Zhang F, Yan H, Yin P. Science, 2017, 358(6369): eaao2648.
|
| [26] |
Cutler J I, Auyeung E, Mirkin C A. J. Am. Chem. Soc., 2012, 134(3): 1376.
|
| [27] |
Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 199, 382(6592): 607.
|
| [28] |
Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz P G. Nature, 199, 382(6592): 609.
|
| [29] |
Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Science, 2011, 334(6053): 204.
|
| [30] |
Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A. Nature, 2014, 505(7481): 73.
|
| [31] |
Mastroianni A J, Claridge S A, Alivisatos A P. J. Am. Chem. Soc., 2009, 131(24): 8455.
|
| [32] |
Chao J, Wang J, Wang F, Ouyang X, Kopperger E, Liu H, Li Q, Shi J, Wang L, Hu J, Wang L, Huang W, Simmel F C, Fan C. Nature Materials, 2019, 18(3): 273.
|
| [33] |
Zhang H L, Chao J, Pan D, Liu H J, Qiang Y, Liu K, Cui C J, Chen J H, Huang Q, Hu J, Wang L H, Huang W, Shi Y Y, Fan C H. Nat. Commun., 2017, 8: 14738.
|
| [34] |
Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5(11): 8783.
|
| [35] |
Walsh A S, Yin H F, Erben C M, Wood M J A, Turberfield A J. ACS Nano, 2011, 5(7): 5427.
|
| [36] |
He L, Lu D Q, Liang H, Xie S T, Zhang X B, Liu O L, Yuan Q, Tan W H. J. Am. Chem. Soc., 2018, 140(1): 258.
|
| [37] |
Liu W Y, Halverson J, Tian Y, Tkachenko A V, Gang O. Nat. Chem., 201, 8(9): 867.
|
| [38] |
Jiang D, Ge Z, Im H J, England C G, Ni D, Hou J, Zhang L, Kutyreff C J, Yan Y, Liu Y, Cho S Y, Engle J W, Shi J, Huang P, Fan C, Yan H, Cai W. Nat. Biomed. Eng., 2018, 2(11): 865.
|
| [39] |
Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc. Natl. Acad. Sci. USA, 2013, 110(20): 7998.
|
| [40] |
Yang Y R, Liu Y, Yan H. Bioconj. Chem., 2015, 26(8): 1381.
|
| [41] |
Shelby M L, Lestrange P J, Jackson N E, Haldrup K, Mara M W, Stickrath A B, Zhu D, Lemke H T, Chollet M, Hoffman B M, Li X, Chen L X. J. Am. Chem. Soc., 201, 138(28): 8752.
|
| [42] |
Chhabra R, Sharma J, Liu Y, Yan H. Nano Lett., 200, 6(5): 978.
|
| [43] |
Zhang J, Liu Y, Ke Y, Yan H. Nano Lett., 200, 6(2): 248.
|
| [44] |
Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C. Nature, 2018, 559(7715): 593.
|
| [45] |
He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452(7184): 198.
|
| [46] |
Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22(42): 4754.
|
| [47] |
Wang Y, Mueller J E, Kemper B, Seeman N C. Biochemistry, 1991, 30(23): 5667.
|
| [48] |
Fu T J, Seeman N C. Biochemistry, 1993, 32(13): 3211.
|
| [49] |
Tian C, Zhang C. Methods Mol. Biol., 2017, 1500: 11.
|
| [50] |
Zhang C, Ko S H, Su M, Leng Y, Ribbe A E, Jiang W, Mao C. J. Am. Chem. Soc., 2009, 131(4): 1413.
|
| [51] |
Zhang C, He Y, Su M, Ko S H, Ye T, Leng Y, Sun X, Ribbe A E, Jiangh W, Mao C. Faraday Discuss., 2009, 143: 221. discussion 265
|
| [52] |
Hong F, Zhang F, Liu Y, Yan H. Chem. Rev., 2017, 117(20): 12584.
|
| [53] |
Liu L, You Y, Zhou K, Guo B, Cao Z, Zhao Y, Wu H C. Angew. Chem. Int. Ed., 2019, 58: 14929.
|
| [54] |
Maingi V, Burns J R, Uusitalo J J, Howorka S, Marrink S J, Sansom M S P. Nat. Commun., 2017, 8: 14784.
|
| [55] |
Shao Y, Jia H, Cao T, Liu D. Acc. Chem. Res., 2017, 50(4): 659.
|
| [56] |
English M A, Soenksen L R, Gayet R V, de Puig H, Angenent-Mari N M, Mao A S, Nguyen P Q, Collins J J. Science, 2019, 365(6455): 780.
|
| [57] |
Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86(4): 2124.
|
| [58] |
Ge Z, Pei H, Wang L, Song S, Fan C. Sci. Chi. Chem., 2011, 54(8): 1273.
|
| [59] |
Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew. Chem. Int. Ed., 2015, 54(7): 2151.
|
| [60] |
Wen Y, Pei H, Shen Y, Xi J, Lin M, Lu N, Shen X, Li J, Fan C. Sci. Rep., 2012, 2: 867.
|
| [61] |
Ge Z, Su Z, Simmons C R, Li J, Jiang S, Li W, Yang Y, Liu Y, Chiu W, Fan C, Yan H. ACS Appl. Mater. Interfaces, 2019, 11(15): 13874.
|
| [62] |
Ge Z, Fu J, Liu M, Jiang S, Andreoni A, Zuo X, Liu Y, Yan H, Fan C. ACS Appl. Mater. Interfaces, 2019, 11(15): 13881.
|
| [63] |
Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C. J. Am. Chem. Soc., 2012, 134: 11876.
|
| [64] |
Zhao Z, Liu Y, Yan H. Nano Lett., 2011, 11: 2997.
|
| [65] |
Tian Y, Zhang Y, Wang T, Xin H L, Li H, Gang O. Nature Materials, 201, 15: 654.
|
| [66] |
Langer R. Nature, 1998, 392: 5.
|
| [67] |
Liang L, Li J, Li Q, Huang Q, Shi J Y, Yan H, Fan C H. Angew. Chem. Int. Ed., 2014, 53(30): 7745.
|
| [68] |
Wiraja C, Zhu Y, Lio D C S, Yeo D C, Xie M, Fang W, Li Q, Zheng M, van Steensel M, Wang L, Fan C, Xu C. Nat. Commun., 2019, 10(1): 1147.
|
| [69] |
Ko S, Liu H, Chen Y, Mao C. Biomacromolecules, 2008, 9(11): 3039.
|
| [70] |
Sefah K, Shangguan D, Xiong X, O’Donoghue M B, Tan W. Nat. Protoc., 2010, 5(6): 1169.
|
| [71] |
Varkouhi A K, Scholte M, Storm G, Haisma H J. J. Control Release, 2011, 151(3): 220.
|
| [72] |
Howorka S. Science, 201, 352(6288): 890.
|
| [73] |
Burns J R, Seifert A, Fertig N, Howorka S. Nat. Nanotech., 201, 11(2): 152.
|
| [74] |
Burns J R, Stulz E, Howorka S. Nano Lett., 2013, 13(6): 2351.
|
| [75] |
Langecker M, Arnaut V, Martin T G, List J, Renner S, Mayer M, Dietz H, Simmel F C. Science, 2012, 338(6109): 932.
|
| [76] |
Czogalla A, Kauert D J, Franquelim H G, Uzunova V, Zhang Y, Seidel R, Schwille P. Angew. Chem. Int. Ed. Engl., 2015, 54(22): 6501.
|
| [77] |
Burns J R, Göpfrich K, Wood J W, Thacker V V, Stulz E, Keyser U F, Howorka S. Angew. Chem. Int. Ed. Engl., 2013, 52(46): 12069.
|
| [78] |
Johnson-Buck A, Jiang S, Yan H, Walter N G. ACS Nano, 2014, 8(6): 5641.
|
| [79] |
Johnson-Buck A, Jiang S, Yan H, Walter N G. ACS Nano, 2014, 8: 5641.
|
| [80] |
Xie N, Liu S, Yang X, He X, Huang J, Wang K. Analyst, 2017, 142: 3322.
|
| [81] |
Hu Q, Li H, Wang L, Gu H, Fan C. Chem. Rev., 2018, 119(10): 6459.
|
| [82] |
Hu Q, Wang S, Wang L, Gu H, Fan C. Advanced Healthcare Materials, 2018, 20: e1701153.
|
| [83] |
Doherty G J, McMahon H T. Annu. Rev. Biochem., 2009, 78: 857.
|
| [84] |
Meng M, Gan Z X, Zhang J, Liu K L, Wang L H, Li S F, Yao Y, Zhu Y, Li J. Physica Status Solidi B-Basic Solid State Physics, 2017, 254(7): 1700011.
|
| [85] |
Banerjee A, Berezhkovskii A, Nossal R. Phys. Biol., 201, 13(1): 016005.
|
| [86] |
McMahon H T, Boucrot E. Nat. Rev. Mol. Cell Biol., 2011, 12(8): 517.
|
| [87] |
Peters P J, Mironov A, Peretz D, van Donselaar E, Leclerc E, Erpel S, de Armond S J, Burton D R, Williamson R A, Vey M, Prusiner S B. J. Cell Biol., 2003, 162(4): 703.
|
| [88] |
Nabi I R, Le P U. J. Cell Biol., 2003, 161(4): 673.
|
| [89] |
Schaffert D H, Okholm A H, Sørensen R S, Nielsen J S, Tørring T, Rosen C B, Kodal A L, Mortensen M R, Gothelf K V, Kjems J. Small, 201, 12(19): 2634.
|
| [90] |
Lee H, Lytton-Jean A K R, Chen Y, Love K T, Park A I, Karagiannis E D, Sehgal A, Querbes W, Zurenko C S, Jayaraman M, Peng C G, Charisse K, Borodovsky A, Manoharan M, Donahoe J S, Truelove J, Nahrendorf M, Langer R, Anderson D G. Nat. Nanotech., 2012, 7(6): 389.
|
| [91] |
Li S P, Jiang Q, Liu S L, Zhang Y L, Tian Y H, Song C, Wang J, Zou Y G, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G B, Nie G J, Yan H, Ding B Q, Zhao Y L. Nat. Biotechnol., 2018, 36(3): 258.
|
| [92] |
Schwarzenbach H, Hoon D S, Pantel K. Nat. Rev. Cancer, 2011, 11(6): 426.
|
| [93] |
Choi H M T, Chang J Y, Trinh L A, Padilla J E, Fraser S E, Pierce N A. Nat. Biotechnol., 2010, 28(11): 1208.
|
| [94] |
Tay C Y, Yuan L, Leong D T. ACS Nano, 2015, 9(5): 5609.
|
| [95] |
Zhou W, Li D, Xiong C, Yuan R, Xiang Y. ACS Appl. Mater, Interfaces, 201, 8(21): 13303.
|
| [96] |
Li S, Xu L, Ma W, Wu X, Sun M, Kuang H, Wang L, Kotov N A, Xu C. J. Am. Chem. Soc., 201, 138(1): 306.
|
| [97] |
Thekkan Shareefa, Jani Maulik S., Cui Chang, Dan Krishna, Zhou Guolin, Becker Lev, Krishnan Yamuna. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nature Chemical Biology, 2018, 15(12): 1165-1172.
|
| [98] |
Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X. Anal. Chem., 2014, 86: 7843.
|
| [99] |
Zhou W, Liang W, Li D, Yuan R, Xiang Y. Biosens. Bioelectron., 201, 85: 573.
|
| [100] |
Dan K, Veetil A T, Chakraborty K, Krishnan Y. Nat. Nanotech., 2019, 14(3): 252.
|
| [101] |
Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A, Ryan P, Balis U J, Tompkins R G, Haber D A, Toner M. Nature, 2007, 450(7173): 1235.
|
| [102] |
Wen C Y, Wu L L, Zhang Z L, Liu Y L, Wei S Z, Hu J, Tang M, Sun E Z, Gong Y P, Yu J, Pang D W. ACS Nano, 2014, 8(1): 941.
|
| [103] |
Zhao W, Cui C H, Bose S, Guo D, Shen C, Wong W P, Halvorsen K, Farokhzad O C, Teo G S, Phillips J A, Dorfman D M, Karnik R, Karp J M. Proc. Natl. Acad. Sci., USA, 2012, 109(48): 19626.
|
| [104] |
Sheng W, Chen T, Tan W, Fan Z H. ACS Nano, 2013, 7(8): 7067.
|
| [105] |
Qu X, Wang S, Ge Z, Wang J, Yao G, Li J, Zuo X, Shi J, Song S, Wang L, Li L, Pei H, Fan C. J. Am. Chem. Soc., 2017, 139(30): 10176.
|
| [106] |
Li S, Chen N, Zhang Z, Wang Y. Biomaterials, 2013, 34(2): 460.
|
| [107] |
Seferos D S, Giljohann D A, Hill H D, Prigodich A E, Mirkin C A. J. Am. Chem. Soc., 2007, 129: 15477.
|
| [108] |
Halo T L, McMahon K M, Angeloni N L, Xu Y, Wang W, Chinen A B, Malin D, Strekalova E, Cryns V L, Cheng C, Mirkin C A, Thaxton C S. Proc. Natl. Acad. Sci. USA, 2014, 111(48): 17104.
|
| [109] |
Briley W E, Bondy M H, Randeria P S, Dupper T J, Mirkin C A. Proc. Natl. Acad. Sci. USA, 2015, 112(31): 9591.
|
| [110] |
Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Angew. Chem. Int. Ed., 2009, 48(46): 8670.
|
| [111] |
Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem. Int. Ed., 2012, 51(36): 9020.
|
| [112] |
Peng P, Du Y, Zheng J, Wang H, Li T. Angew. Chem. Int. Ed., 2019, 58: 1648.
|
| [113] |
Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V, Prakash V, Grazon C, Nadal B, Maiti P K, Johannes L, Dubertret B, Krishnan Y. Nat. Nanotechnol., 201, 11(12): 1112.
|
| [114] |
Wu C, Chen T, Han D, You M, Peng L, Cansiz S, Zhu G, Li C, Xiong X, Jimenez E, Yang C J, Tan W. ACS Nano, 2013, 7(7): 5724.
|
| [115] |
Saha S, Prakash V, Halder S, Chakraborty K, Krishnan Y. Nat. Nanotech., 2015, 10(7): 645.
|
| [116] |
Modi S, Nizak C, Surana S, Halder S, Krishnan Y. Nat. Nanotechnol., 2013, 8(6): 459.
|
| [117] |
Surana S, Bhat J M, Koushika S P, Krishnan Y. Nat. Commun., 2011, 2: 340.
|
| [118] |
Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang Z G, Zou G, Liang X, Yan H, Ding B. J. Am. Chem. Soc., 2012, 134: 13396.
|
| [119] |
Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. Nano Lett., 2012, 12: 4254.
|
| [120] |
Sun W, Ji W, Hall J M, Hu Q, Wang C, Beisel C L, Gu Z. Angew. Chem. Int. Ed., 2015, 54: 12029.
|
| [121] |
Tian J, Ding L, Ju H, Yang Y, Li X, Shen Z, Zhu Z, Yu J S, Yang C J. Angew. Chem. Int. Ed., 2014, 53: 9544.
|
| [122] |
Bagalkot V, Farokhzad O C, Langer R, Jon S. Angew. Chem. Int. Ed. Engl., 200, 45(48): 8149.
|
| [123] |
Yuan Q, Zhang Y, Chen T, Lu D, Zhao Z, Zhang X, Li Z, Yan C H, Tan W. ACS Nano, 2012, 6(7): 6337.
|
| [124] |
Zhang P, He Z, Wang C, Chen J, Zhao J, Zhu X, Li C Z, Min Q, Zhu J J. ACS Nano, 2015, 9(1): 789.
|
| [125] |
Huang F, Liao W C, Sohn Y S, Nechushtai R, Lu C H, Willner I. J. Am. Chem. Soc., 201, 138(28): 8936.
|
| [126] |
Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. J. Am. Chem. Soc., 2014, 136(42): 14722.
|
| [127] |
Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv. Funct. Mater., 2018, 28(8): 1705137.
|
| [128] |
Chen W H, Yu X, Liao W C, Sohn Y S, Cecconello A, Kozell A, Nechushtai R, Willner I. Adv. Funct. Mater., 2017, 27(37): 1702102.
|
| [129] |
Liu H, Kwong B, Irvine D J. Angew. Chem. Int. Ed. Engl., 2011, 50(31): 7052.
|
| [130] |
Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. ACS Nano, 2012, 6(7): 5931.
|
| [131] |
Liu X W, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. Nano Lett., 2012, 12(8): 4254.
|
| [132] |
Xiong X, Liu H, Zhao Z, Altman M B, Lopez-Colon D, Yang C J, Chang L J, Liu C, Tan W. Angew. Chem. Int. Ed., 2013, 52(5): 1472.
|
| [133] |
Celli J P, Spring B Q, Rizvi I, Evans C L, Samkoe K S, Verma S, Pogue B W, Hasan T. Chem. Rev., 2010, 110(5): 2795.
|
| [134] |
Wang K, You M, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang C J, Tan W. Angew. Chem. Int. Ed., 2011, 50(27): 6098.
|
| [135] |
You M, Peng L, Shao N, Zhang L, Qiu L, Cui C, Tan W. J. Am. Chem. Soc., 2014, 136(4): 1256.
|
| [136] |
You M, Zhu G, Chen T, Donovan M J, Tan W. J. Am. Chem. Soc., 2015, 137(2): 667.
|
| [137] |
Naldini L. Nature, 2015, 526(7573): 351.
|
| [138] |
Kotterman M A, Schaffer D V. Nat. Rev. Genet., 2014, 15(7): 445.
|
| [139] |
Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Nature, 1998, 391(6669): 806.
|
| [140] |
Zamore P D, Tuschl T, Sharp P A, Bartel D P. Cell, 2000, 101(1): 25.
|
| [141] |
Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Nature, 2001, 411(6836): 494.
|
| [142] |
Brummelkamp T R, Bernards R, Agami R. Science, 2002, 296(5567): 550.
|
| [143] |
Hong C A, Eltoukhy A A, Lee H, Langer R, Anderson D G, Nam Y S. Angew. Chem. Int. Ed., 2015, 54(23): 6740.
|
| [144] |
Li J, Zheng C, Cansiz S, Wu C, Xu J, Cui C, Liu Y, Hou W, Wang Y, Zhang L, Teng I T, Yang H H, Tan W. J. Am. Chem. Soc., 2015, 137(4): 1412.
|
| [145] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. Science, 2012, 337(6096): 816.
|
| [146] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Science, 2013, 339(6121): 819.
|
| [147] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. Science, 2013, 339(6121): 823.
|
| [148] |
Huang Jiaguo, Li Jingchao, Lyu Yan, Miao Qingqing, Pu Kanyi. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nature Materials, 2019, 18(10): 1133-1143.
|
| [149] |
Granger D N, Kvietys P R. Redox. Biol., 2015, 6: 524.
|
| [150] |
Boor P, Ostendorf T, Floege J. Nat. Rev. Nephrol., 2010, 6(11): 643.
|
| [151] |
Praetorius F, Kick B, Behler K L, Honemann M N, Weuster-Botz D, Dietz H. Nature, 2017, 552(7683): 84.
|
| [152] |
Agarwal N P, Matthies M, Gür F N, Osada K, Schmidt T L. Angew. Chem. Int. Ed., 2017, 56(20): 5460.
|
| [153] |
Ponnuswamy N, Bastings M M C, Nathwani B, Ryu J H, Chou L Y T, Vinther M, Li W A, Anastassacos F M, Mooney D J, Shih W M. Nat. Commun., 2017, 8: 15654.
|