A Sensitive Fluorescent Turn-on Probe NapP-deap Based on Naphthalimide Derivative to Detect Hg(II) Ions in HEPES Buffer Solution and Living Cells

Shuxin Wang , Jian Cao , Yuxiao Cheng , Chenhong Lu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 967 -971.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 967 -971. DOI: 10.1007/s40242-019-9246-7
Article

A Sensitive Fluorescent Turn-on Probe NapP-deap Based on Naphthalimide Derivative to Detect Hg(II) Ions in HEPES Buffer Solution and Living Cells

Author information +
History +
PDF

Abstract

A highly sensitive fluorescent “turn-on” probe NapP-deap based on naphthalimide derivative was developed that bound Hg2+ ions rapidly in the N-2-hydroxyethylpiperazine-N-ethane-sulphonic acid(HEPES) buffer solution via photo-induced electron transfer(PET) being inhibited mechanism. The titration experiment displayed that the emission intensity of NapP-deap at 540 nm was almost linearly increased by about 3-fold. The Job’s plot showed a stoichiometry factor of 1:1 of the ligand-to-metal ratio. The detection limit of fluorescent probe was calculated to be 6.2×10−9 mol/L. 1H NMR studies could confirm that one Hg2+ ion was bound by the N atoms(a, b) of piperazine or the N atom(c) of pyridine. The fluorescent probe could be used for the detection of Hg2+ ions in living cells.

Keywords

Fluorescent “turn-on” / Hg2+ / HEPES buffer solution / Living cell / PET mechanism

Cite this article

Download citation ▾
Shuxin Wang, Jian Cao, Yuxiao Cheng, Chenhong Lu. A Sensitive Fluorescent Turn-on Probe NapP-deap Based on Naphthalimide Derivative to Detect Hg(II) Ions in HEPES Buffer Solution and Living Cells. Chemical Research in Chinese Universities, 2019, 35(6): 967-971 DOI:10.1007/s40242-019-9246-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ueno A. Instrumentation Science & Technology, 1993, 22(4): 405.

[2]

Huang C B, Fan J L, Peng X J, Lin Z Y, Guo B P, Ren A X. Journal of Photochemistry & Photobiology A Chemistry, 2008, 199(2): 144.

[3]

Brümmer O, La Clair J J, Janda K D. Bioorganic & Medicinal Chemistry, 2001, 9(4): 1067.

[4]

Kim S K, Swamy K M K, Chung S Y, Kim H N, Min J K, Jeong Y S. Tetrahedron Letters, 2010, 51(25): 3286.

[5]

Boening D W. Chemosphere, 2000, 40(12): 1335.

[6]

Nolan E M, Lippard S J. Chem.Rev., 2008, 108(9): 3443.

[7]

Pandey S K, Kim K H, Brown R J C. Trac. Trends in Analytical Chemistry, 2011, 30(6): 899.

[8]

dos Santos J S, De L G M, Pastor A, dos Santos M L. Talanta, 2010, 80(1): 207.

[9]

Ros-Lis J V, Marcos M D, Mártinez-Máñez R, Rurack K, Soto J. Angew. Chem. In. Ed., 2010, 44(28): 4405.

[10]

Coskun A, Akkaya E U. Journal American Chemical Society, 200, 128(45): 14474.

[11]

Zhang X, Xiao Y, Qian X. Angew. Chem. In. Ed., 2008, 47(42): 8025.

[12]

Neupane L N, Kim J M, Lohani C R, Lee K H. J. Mater. Chem., 2012, 22(9): 4003.

[13]

Ono A, Togashi H. Angew. Chem. In. Ed., 2010, 43(33): 4300.

[14]

Ko S K, Yang Y K, Tae J, Shin I. J. Am. Chem. Soc., 200, 128(43): 14150.

[15]

Min H L, Lee S W, Sang H K, Kang C H, Kim J S. Organic Letter, 2009, 11(10): 2101.

[16]

Wang H, Li Y, Xu S, Li Y, Zhou C, Fei X. Organic Biomolecular Chemistry, 2011, 9(8): 2850.

[17]

Lin W, Cao X, Ding Y, Yuan L, Long L. Chem. Commun., 2010, 46(20): 3529.

[18]

Kim H N, Ren W X, Kim J S, Yoon J. Chem. Soc. Rev., 2012, 41(8): 3210.

[19]

Wang S S, Lin B, Chen L, Li N, Xu J J, Wang J. Anal. Chem., 2018, 90(20): 11764.

[20]

Malek A, Bera K, Biswas S, Perumal G, Das A K, Doble M. Anal. Chem., 2019, 91(5): 3533.

[21]

Wang Y, Pan F, Zhang Y, Peng F, Huang Z, Zhang W. Analyst, 201, 141(15): 4789.

[22]

Lee J J, Kim Y S, Nam E, Lee S Y, Lim M H, Kim C. Dalton Transactions, 201, 45(13): 5700.

[23]

Lei L, Tan X, Luo S L, Shi C M. New Journal of Chemistry, 2017, 41(17): 8899.

[24]

Zhang G, Zhang D, Yin S, Yang X, Shuai Z, Zhu D. Chem. Commun., 2005, 16(16): 2161.

[25]

Kim J S, Choi M G, Song K C, No K T, Ahn S, Chang S K. Organic Letters, 2007, 9(6): 1129.

[26]

Ha-Thi M H, Penhoat M, Michelet V, Leray I. Organic Letters, 2007, 9(6): 1133.

[27]

Song Fengling, Watanabe Shuji, Floreancig Paul E., Koide Kazunori. Oxidation-Resistant Fluorogenic Probe for Mercury Based on Alkyne Oxymercuration. Journal of the American Chemical Society, 2008, 130(49): 16460-16461.

[28]

Zhou Y, Zhu C Y, Gao X S, You X Y, Yao C. Organic Letters, 2010, 12(11): 2566.

[29]

Bag B, Pal A. Organic Biomolecular Chemistry, 2011, 9(12): 4467.

[30]

Zhang S F, Geng J M, Yang W, Zhang X L. RSC Advance, 2014, 4(24): 12596.

[31]

Tsukamoto K, Shinohara Y, Iwasaki S, Maeda H. Chem. Commun., 2011, 47(17): 5073.

[32]

Lee J W, Jung H S, Kwon P S, Kim J W, Bartsch R A K Y. Organic Letters, 2008, 10(17): 3801.

[33]

Du J J, Fan J L, Peng X J, Sun P P, Wang J Y, Li H L. Organic Letters, 2010, 12(3): 476.

[34]

Liu F, Tang P, Ding R, Liao L, Wang L, Wang M. Dalton Transactions, 2017, 46(23): 7515.

[35]

Wang J B, Xiao Y, Zhang Z C, Qian X H, Yang Y Y, Xu Q. J. Mater. Chem., 2005, 15(27/28): 2836.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/