Hydrogen Production by Chemical Looping Gasification of Corn Stalk Driven by a tert-Butanol Solution

Wu Qin , Shubo Chen , Jinqi Zhu , Maodong Zhang , Xianbin Xiao

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1012 -1017.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1012 -1017. DOI: 10.1007/s40242-019-9225-z
Article

Hydrogen Production by Chemical Looping Gasification of Corn Stalk Driven by a tert-Butanol Solution

Author information +
History +
PDF

Abstract

The purpose of this work is to convert organic wastewater into oxidants(H2O and CO2) to promote biomass gasification during the chemical looping process to achieve high-H2/CO-ratio syngas. A tert-butanol solution was selected as the model organic wastewater to generate enough H2O and CO2 to promote corn stalk chemical looping gasification(CLG). A series of CLG experiments was conducted at 850°C under various degrees of oxygen excess(Ω). An Ω of approximately 0.9 led to the highest hydrogen yield and fixed carbon conversion compared with the other cases. Chemometrics and thermodynamic analysis further validated the possibility of corn stalk CLG using a tert-butanol solution. The results show that CLG of biomass-organic wastewater can both treat organic waste and promote chemical looping processes.

Keywords

Chemical looping gasification / Hydrogen energy / Biomass / Wastewater / Oxygen carrier

Cite this article

Download citation ▾
Wu Qin, Shubo Chen, Jinqi Zhu, Maodong Zhang, Xianbin Xiao. Hydrogen Production by Chemical Looping Gasification of Corn Stalk Driven by a tert-Butanol Solution. Chemical Research in Chinese Universities, 2019, 35(6): 1012-1017 DOI:10.1007/s40242-019-9225-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miranda P E V. Science and Engineering of Hydrogen-based Energy Technologies: Hydrogen Production and Practical Applications in Energy Generation, 2018, Amsterdam: Academic Press

[2]

Dou B, Zhang H, Song Y, Zhao F, Jiang B, He M, Ruan C, Chen H, Xu Y. Sustainable Energy &Fuels, 2019, 3: 342.

[3]

Huang Z, Zhang Y, Fu J, Yu L, Chen Y, Liu S, He F, Chen D, Wei G, Zhao K, Zhao Z, Li H. International Journal of Hydrogen Energy, 201, 41: 17871.

[4]

Li X, Zhao C, Li Y, Zhang X, Chen L, Wang C. Advances in New and Renewable Energy, 2018, 6: 475.

[5]

Ali A, Vladimir K, Tatiana I. Energy Fuels, 2018, 32: 7294.

[6]

Adánez J, Abad A, García-Labiano F, Gayán P, Diego L F. Progress Energy Combustion Science, 2012, 38: 215.

[7]

Zeng L P, Huang F, Zhu X, Zheng M, Li K Z. Chem. J. Chinese Universities, 2017, 38(1): 115.

[8]

Cheng Z, Qin L, Fan J, Fan L. Engineering, 2018, 4: 343.

[9]

Deng G X, Li K Z, Cheng X M, Gu Z H, Lu C Q, Zhu X. Chem. J. Chinese Universities, 2018, 39(2): 327.

[10]

Muhammad A, Andac A, Qasim I, Felix D, Robin S, Agnieszka K, Christoph R. Nature Communications, 2018, 9: 1.

[11]

Qin W, Lin C F, Cheng W L, Xiao X B. Chem. J. Chinese Universities, 2015, 36(1): 116.

[12]

Cheng W L, Zhu M Q, Qin W, Hou C C. Chem. J. Chinese Universities, 2018, 39(3): 506.

[13]

Zhao S, Chen S, Christopher K, Hu J, Asif H, Tan G, Chen A, Duan L, John B, Tang J, Chen T, Fan M, Xiang W. Applied Energy, 2018, 212: 931.

[14]

Mohammad I, Wen L, Martin S, Matthew T, Stuart A. Energy Fuels, 201, 30: 6220.

[15]

Soria M A, Barros D B, Madeira L M. Fuels, 2019, 244: 184.

[16]

Wu Y, Liao Y, Liu G, Ma X. International Journal of Hydrogen Energy, 2018, 43: 19375.

[17]

Liu G, Liao Y, Wu Y, Ma Y. Applied Energy, 2018, 212: 955.

[18]

Jiang L, Liu C, Hu S, Wang Y, Xu K, Su S, Xiang J. Energy Conversion and Management, 2018, 158: 147.

[19]

Muhammad S, Suzana Y, Abrar I, David O, Muhammad A. Renewable and Sustainable Energy Reviews, 2017, 73: 468.

[20]

Nina A, Glykeria D, Heiko D, Günter S. Journal of Industrial Engineering Chemistry Research, 2015, 54: 5624.

[21]

Yi Y, Li Y, Zhao J. Sustainability, 2018, 10: 1.

[22]

Liu L, Cao Y, Ma R, Liu L, Cao Y, Ma D R, Liu Q C, Yang J. RSC Advances, 2017, 7: 55450.

[23]

Morgan-Sagastume F, Hjort M, Cirne D, Gerardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S, Arcos-Hernandez M, Magnusson P, Werker A. Bioresour. Technol., 2015, 181: 78.

[24]

Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos Hernandez M, Karabegovic L, Magnusson P, Werker A. New Biotechnology, 2017, 35: 42.

[25]

Jia Q, Xiong H, Wang H, Shi H, Sheng X, Sun R, Chen G. Bioresource Technology, 2014, 171: 159.

[26]

Chakravarty P, Mhaisalkar V, Chakrabarti T. Bioresource Technology, 2010, 101: 2896.

[27]

Tamis J, Luzkova K, Jiang Y, van Loosdrecht M C M, Kleerebezem R. Journal Biotechnology, 2014, 192: 161.

[28]

Dong C Q, Liu X L, Qin W, Lu Q, Wang X Q, Shi S M, Yang Y P. Applied Surface Science, 2012, 258: 2562.

[29]

Qin W, Wang J, Gao Q, Li G, Chen X, Chen S, Jia K, Xiao B, Zheng Z, Zhao J, Liu L, Dong C. Energy Fuels, 2019, 33: 1622.

[30]

Huang Z, Zhang Y, Fu J, Yu L, Chen M, Liu S, He F, Chen D Z, Wei G Q, Zhao K, Zheng A Q, Zhao Z L, Li H B. International Journal of Hydrogen Energy, 201, 41: 17871.

[31]

Qin W, Chen S, Ma B, Wang J, Li J, Liang R, Xu Z, Liu L, Dong C, Zhang H. International Journal of Hydrogen Energy, 2019, 44: 7149.

[32]

Adanez J, Abad A, Mendiara T, Gayan P, de Diego L F, Garcíae-Labiano F. Progress Energy Combust Science, 2018, 6: 56.

[33]

Zaini I, Nurdiawati A, Aziz M. Applied Energy, 2017, 207: 34.

[34]

Arshad A, Muhammad T A, Lyes B. Bioresource Technology, 2017, 233: 353.

[35]

Huang Z, He F, Feng Y, Zhao K, Zheng A, Chang S, Wei G, Zhao Z, Li H. Energy Fuels, 2014, 28: 183.

[36]

Xu F, Shen W. Physical Chemistry, 2005, Beijing: Higher Education Press 481.

[37]

Qin W, Wang Y, Lin C, Hu X, Dong C. Energy Fuels, 2015, 29: 1210.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/