Solubility of Potassium Acetate in Water, 2,2,2-Trifluoroethanol, Ethanol and Their Binary Mixtures at 288.15–333.15 K

Xi Wu , Shuaishuai Yang , Shiming Xu , Xinjie Zhang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 921 -926.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 921 -926. DOI: 10.1007/s40242-019-9193-3
Article

Solubility of Potassium Acetate in Water, 2,2,2-Trifluoroethanol, Ethanol and Their Binary Mixtures at 288.15–333.15 K

Author information +
History +
PDF

Abstract

The potassium acetate solutions are new potential working fluids for the closed-type reverse electrodialysis(RED) power generation system driven by thermal energy. In this paper, the solubilities of potassium acetate in water, 2,2,2-trifluoroethanol, ethanol and their binary mixtures were measured by using the laser dynamic method over the temperature range of 288.15 to 333.15 K under atmospheric pressure. The results indicate that the solubility of potassium acetate solution is influenced by both the solvent components and solution temperature evidently. Besides, it is found that the measured solubility data of the potassium acetate-water-2,2,2-trifluoroethanol solutions as per the laser dynamic method are slightly larger than that of the data obtained as per the static method. Finally, five correlation models, including the Van’t Hoff model, Modified Apelblat model, Yaws model, λh model and Modified Apelblat-Jouyban-Acree model, were used to correlate the measured solubility data of those potassium acetate solutions, with the relative standard deviations within 0.23% to 1.58%.

Keywords

Solubility / Electrolyte / Solvent / Potassium acetate

Cite this article

Download citation ▾
Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang. Solubility of Potassium Acetate in Water, 2,2,2-Trifluoroethanol, Ethanol and Their Binary Mixtures at 288.15–333.15 K. Chemical Research in Chinese Universities, 2020, 36(5): 921-926 DOI:10.1007/s40242-019-9193-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kang B, Kim H J, Kim D K. J. Memb. Sci., 2018, 550: 286.

[2]

Vermaas D A, Veerman J, Yip N Y, Elimelech M, Saakes M, Nijmeijer K. ACS Sustain. Chem. Eng., 2013, 1: 1295.

[3]

Wu X., Xu S. M., Wu D. B., Ternary Working Fluids for a Heat-power Conversion System with Reverse Electrodialysis Technology, CN 105810985A, 2018

[4]

Yip N Y, Brogioli D, Hamelers H V, Nijmeijer K. Environ. Sci. Technol., 201, 50: 12072.

[5]

Cipollina A, Micale G. Sustainable Energy from Salinity Gradients, 2016, Duxford: Woodhead Publishing 135.

[6]

Giacalone F, Olkis C, Santori G, Cipollina A, Brandani S, Micale G. Energy, 2019, 166: 674.

[7]

Wu X, Xu S M, Wu D B, Liu H, Chen S Q. CIESC J., 201, 67(S2): 326.

[8]

Wu X, Xu S, Wu D B, Liu H. Chinese J. Chem. Eng., 2018, 26(12): 2581.

[9]

Wu X, Gong Y, Xu S M, Yan Z T, Zhang X J, Yang S S. J. Chem. Eng. Data., 2019, 64: 4319.

[10]

Wu X, Gong Y, Xu S M, Wu D B, Liu H, Hu J Y. J. Chem. Eng. Chinese Universities, 2019, 33(3): 533.

[11]

Haynes W M, Lide D R, Bruno T J. CRC Handbook of Chemistry and Physics, 2014 95th Edition Boca Raton: CRC Press

[12]

Apelblat A, Manzurola E. J. Chem. Thermodynamics, 2007, 39(8): 1176.

[13]

Meranda D, Furter W F. Can. J. Chem. Eng., 196, 44(5): 298.

[14]

Yu X P, Wang Q, Guo Y F, Deng T L. Chem. Res. Chinese Universities, 2018, 34(4): 798.

[15]

Li D C, Fan R, Yang S N, Zhang Z Y. Chem. Res. Chinese Universities, 2018, 34(5): 803.

[16]

Yu Q S, Black S, Wei H Y. J. Chem. Eng. Data, 2009, 54(7): 2123.

[17]

Yang Z S, Zeng Z X, Xue W L, Zhang Y. J. Chem. Eng. Data, 2008, 53(11): 2692.

[18]

Zhang P S, Zhang C, Zhao R, Wan Y M, Yang Z K, He R Y, Chen Q L, Li T, Ren B Z. J. Chem. Eng. Data, 2018, 63(6): 2046.

[19]

Ding Z, Zhang H H, Han D D, Zhu P P, Yang P, Jin S S, Li M C, Gong J B. J. Chem. Eng. Data, 2017, 62(11): 3929.

[20]

Song L C, Zhao D Y, Zhang S G, Zhang X, Wang G, Zhu C Q, Tian Y, Yang C H. J. Chem. Eng. Data, 2018, 63(11): 4176.

[21]

Soleymani J, Gharamaleki V J, Gharamaleki K J, Acree W E, Kenndler E, Jouyban A. J. Mol. Liq., 201, 221: 166.

[22]

National Institute of Standards and Technology, NIST Chemistry Webbook, [accessed 2019-07-16] [https://webbook.nist.gov/chemistry].

[23]

Lemmon E. W., Bell I., Huber M. L., McLinden M. O., NIST Database 23, V10.0., 2018

[24]

Kim K S, Lee J W, Kim J S, Lee H. Korean J. Chem. Eng., 2003, 20(4): 762.

[25]

Kim K S, Lee H. J. Chem. Eng. Data, 2002, 47(2): 216.

[26]

IFA Institute for occupational safety & health of the German social accident insurance. GESTIS Substance Database, [accessed 2019-07-16] [https://gestis-en.itrust.de].

[27]

Liu Q G, Ma L L, Liu J. Chemical Industry Property Manual, 2003, Beijing: Chemical Industry Press 476.

[28]

Treptow R S. J. Chem. Educ., 1984, 61(6): 499.

[29]

Shen Q. Molecular Acid-base Chemistry, 2012, Shanghai: Shanghai Science and Technology Literature Publishing House

[30]

Yang H Y, Zhang T, Xu S J, Han D D, Liu S Y, Yang Y, Du S C, Li M C, Gong J B. J. Chem. Eng. Data, 2017, 62: 3967.

[31]

Hildebrand J H, Prausnitz J M. Regular and Related Solutions: The Solubility of Gases, Liquids and Solids, 1970, New York: Van Nostrand Reinhold

[32]

Hildebrand J H, Scott R L. The Solubility of Nonelectrolytes, 1950 3rd Edition New York: Reinhold

[33]

Sotomayor R G, Holguín A R, Cristancho D M, Delgado D R, Martínez F. J. Mol. Liq., 2013, 180: 34.

[34]

Fedors R F A. Polym. Eng. Sci., 1974, 14: 147.

[35]

Hamid H, Ali M A. Handbook of MTBE and Other Gasoline Oxygenates, 2004, New York: Marcel Dekker Inc.

[36]

Martin A N, Bustamante P, Chun A H C. Physical Chemical Principles in the Pharmaceutical Sciences, 1993 4th Edition Philadelphia: Lea & Febiger

[37]

Baka E, Comer J E A, Nováka K T. J. Pharm. Biomed. Anal., 2008, 46(2): 335.

[38]

Xu A L, Xu R J, Wang J J. Chem. Thermodynamics, 201, 102: 188.

[39]

Reus M A, van der Heijden A E D M, ter Horst J H. Org. Process Res. Dev., 2015, 19(8): 1004.

[40]

Zhang J, Hu J W, Chen L Z, Wang J L. Chinese J. Explosives Propellants, 2010, 33(5): 39.

[41]

Xu R J, Wang J, Du C B, Han S, Meng L, Zhao H K. J. Chem. Thermodynamics, 201, 99: 86.

[42]

Vahdati S, Shayanfar A, Hanaee J, Martínez F, Acree W E Jr., Jouyban A. Ind. Eng. Chem. Res., 2013, 52(47): 16630.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/