Effect of Preparation Method on the Structural Characteristics of NiO-ZrO2 Oxygen Carriers for Chemical-looping Combustion

Yike Liu , Yanhui Long , Yaqin Tang , Zhenhua Gu , Kongzhai Li

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1024 -1031.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1024 -1031. DOI: 10.1007/s40242-019-9189-z
Article

Effect of Preparation Method on the Structural Characteristics of NiO-ZrO2 Oxygen Carriers for Chemical-looping Combustion

Author information +
History +
PDF

Abstract

Chemical-looping combustion(CLC) offers an effective approach for power generation and CO2 capture. In this work, an NiO-ZrO2 oxygen carrier prepared by three methods was subjected to an optimal reaction temperature test, an optimal flow test and a cyclic redox reaction test to explore the most suitable reaction conditions. Through comparative analysis, it is noted that the coprecipitation method is not suitable for the preparation of this NiO-ZrO2 oxygen carrier, while the oxygen carrier prepared by the mechanical mixing method and solution combustion method obtained a higher CH4 conversion rate and CO2 selectivity. In addition, these two oxygen carriers also showed high stability during successive CLC testing. Therefore, both the mechanical mixing method and the solution combustion method can be used to prepare NiO-ZrO2 oxygen carriers.

Keywords

Chemical-looping combustion / NiO-ZrO2 oxygen carrier / Solution combustion method / Mechanical mixing method / Coprecipitation method

Cite this article

Download citation ▾
Yike Liu, Yanhui Long, Yaqin Tang, Zhenhua Gu, Kongzhai Li. Effect of Preparation Method on the Structural Characteristics of NiO-ZrO2 Oxygen Carriers for Chemical-looping Combustion. Chemical Research in Chinese Universities, 2019, 35(6): 1024-1031 DOI:10.1007/s40242-019-9189-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McKee B., Technology Status Report, International Energy Agency, Committee on Energy Research and Technology, Working Party on Fossil Fuels, 2002

[2]

Richter H. J., Knoche K. F., ACS Symposium Series, 1983, 71

[3]

Ishida M, Zheng D, Akehata T. Energy, 1987, 12(2): 147.

[4]

Nandy A, Loha C, Gu S, Sarkar P, Karmakar M K, Chatterjee P K. Renewable and Sustainable Energy Reviews, 201, 59: 597.

[5]

Hossain M M, Lasa H I. Chemical Engineering Science, 2008, 63(18): 4433.

[6]

Yang J, Ma L P, Tang J X, Zhu B, Ma G P. Modern Chemical Industry, 201, 36(1): 25.

[7]

Li D, Li K, Xu R, Wang H, Tian D, Wei Y, Zhu X, Zeng C, Zeng L. Catalysis Today, 2018, 318: 73.

[8]

Rydén M, Cleverstam E, Johansson M, Lyngfelt A, Mattisson T. AIChE Journal, 2010, 56(8): 2211.

[9]

de Diego L F, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella B M, Palacios J M A. Fuel, 2004, 83(13): 1749.

[10]

Chuang S, Dennis J, Hayhurst A, Scott S. Combustion and Flame, 2008, 154(1/2): 109.

[11]

Adánez J, de Diego L F, García-Labiano F, Gayán P, Abad A, Palacios J. Energy & Fuels, 2004, 18(2): 371.

[12]

Johansson M, Mattisson T, Lyngfelt A. Chemical Engineering Research and Design, 200, 84(9): 807.

[13]

Zafar Q, Abad A, Mattisson T, Gevert B, Strand M. Chemical Engineering Science, 2007, 62(23): 6556.

[14]

Mei D, Mendiara T, Abad A, de Diego L, García-Labiano F, Gayán P, Adánez J, Zhao H. Energy & Fuels, 2015, 29(10): 6605.

[15]

Sundqvist S, Arjmand M, Mattisson T, Ryden M, Lyngfelt A. International Journal of Greenhouse Gas Control, 2015, 43: 179.

[16]

He F, Wei Y, Li H, Wang H. Energy & Fuels, 2009, 23(4): 2095.

[17]

Jin H, Okamoto T, Ishida M. Industrial & Engineering Chemistry Research, 1999, 38(1): 126.

[18]

Mattisson T, Johansson M, Lyngfelt A. Fuel, 200, 85(5/6): 736.

[19]

Johansson M, Mattisson T, Lyngfelt A, Abad A. Fuel, 2008, 87(6): 988.

[20]

Ge H, Shen L, Gu H, Jiang S. Chemical Engineering Journal, 2015, 262: 1065.

[21]

Zafar Q, Mattisson T, Gevert B. Industrial & Engineering Chemistry Research, 2005, 44(10): 3485.

[22]

Cheng X, Li K, Wang H, Zhu X, Wei Y, Li Z, Zheng M, Tian D. Chemical Engineering Journal, 2017, 328: 382.

[23]

Wang M, Liu J, Shen F, Cheng H, Dai J, Long Y. Applied Surface Science, 201, 367: 485.

[24]

Lu C, Li K, Wang H, Zhu X, Wei Y, Zheng M, Zeng C. Applied Energy, 2018, 211: 1.

[25]

Deng G, Li K, Gu Z, Zhu X, Wei Y, Cheng X, Wang H. Chemical Engineering Journal, 2018, 341: 588.

[26]

Ishida M, Jin H. Journal of Chemical Engineering of Japan, 1994, 27(3): 296.

[27]

Johansson E, Mattisson T, Lyngfelt A, Thunman H. Fuel, 200, 85(10/11): 1428.

[28]

Silvester L, Antzara A, Boskovic G, Heracleous E, Lemonidou A A, Bukur D B. International Journal of Hydrogen Energy, 2015, 40(24): 7490.

[29]

Linderholm C, Abad A, Mattisson T, Lyngfelt A. International Journal of Greenhouse Gas Control, 2008, 2(4): 520.

[30]

Shen L, Wu J, Gao Z, Xiao J. Combustion and Flame, 2009, 156(7): 1377.

[31]

Ryu H J, Bae D H, Jin G T. Korean Journal of Chemical Engineering, 2003, 20(5): 960.

[32]

Ryu H J, Lim N Y, Bae D H, Jin G T. Korean Journal of Chemical Engineering, 2003, 20(1): 157.

[33]

Siriwardane R, Riley J, Bayham S, Straub D, Tian H, Weber J, Richards G. Applied Energy, 2018, 213: 92.

[34]

Adánez J, Dueso C, de Diego L F, Garcia-Labiano F, Gayán P, Abad A. Energy & Fuels, 2008, 23(1): 130.

[35]

Forero C, Gayán P, de Diego L, Abad A, García-Labiano F, Adánez J. Fuel Processing Technology, 2009, 90(12): 1471.

[36]

Titus J, Roussiere T, Wasserschaff G, Schunk S, Milanov A, Schwab E, Wagner G, Oeckler O, Gläser R. Catalysis Today, 201, 270: 68.

[37]

Yan Q, Zeng F, Li Y, Luo J. Petrochemical Technology, 201, 45(3): 280.

[38]

Li C, Li M. Journal of Raman Spectroscopy, 2002, 33(5): 301.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/