Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Acid Ionic Liquids

Fengli Yu , Yujie Chi , Chong Gao , Ruirui Chen , Congxia Xie , Shitao Yu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 865 -869.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 865 -869. DOI: 10.1007/s40242-019-9186-z
Article

Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Acid Ionic Liquids

Author information +
History +
PDF

Abstract

A series of amino-acid-based ionic liquids was synthesized via one-step protonation of the corresponding L-amino acid by utilizing an array of proton sources. The catalytic activity of the amino-acid-based ionic liquids for the Baeyer-Villiger oxidation of cyclic ketones was investigated using cyclopentanone as a model cycloketone. The proline-based ionic liquid [ProH]CF3SO3 was shown to exhibit the best catalytic activity. The reaction condition was optimized to give the following reagent ratio of n(cyclopentanone):n(catalyst):n(H2O2)=1:0.06:4, 60 °C and 6 h. Under the optimum conditions, the conversion of cyclopentanone was 96.57% and the selectivity for δ-valerolactone was 73.01%. The catalytic activity was shown to be constant after 4 cycles. A simple treatment was allowed for the recover and the reuse of [ProH]CF3SO3. The successful utilization of [ProH]CF3SO3 to catalyze a host of cyclic ketones via Baeyer-Villiger oxidation clearly demonstrated the capacity of [ProH]CF3SO3 to tolerate variation in the substrate.

Keywords

Amino acid ionic liquid / Baeyer-Villiger oxidation / Cyclic ketone / Lactone

Cite this article

Download citation ▾
Fengli Yu, Yujie Chi, Chong Gao, Ruirui Chen, Congxia Xie, Shitao Yu. Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Acid Ionic Liquids. Chemical Research in Chinese Universities, 2020, 36(5): 865-869 DOI:10.1007/s40242-019-9186-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baj S, Slupska R, Chrobok A, Drozdz A. J. Mol. Catal. A: Chem., 2013, 376: 120.

[2]

Herrera A, Martínez-Alvarez R, Ramiro P, Almy J. Monatsh. Chem., 200, 137: 1421.

[3]

Affolter O, Baro A, Frey W, Laschat S. Tetrahedron, 2009, 65: 6626.

[4]

Ren Y Y, Wei Z Y, Wu T, Bian Y F, Leng X F, Zhou C, Li Y. Rsc. Adv., 201, 6: 45791.

[5]

Saikia P K, Sarmah P P, Borah B J, Saikia L, Saikia K, Dutta D K. Green. Chem., 201, 18: 2843.

[6]

Baeyer A, Villiger V. Berichte. Der. Deutschen. Chemischen. Ge-sellschaf., 1899, 32: 3625.

[7]

Michelin R A, Sgarbossa P, Scarso A, Strukul G. Coordin. Chem. Rev., 2010, 254: 646.

[8]

Pillai U R, Sahle-Demessie E. J. Mol. Catal. A: Chem., 2003, 191: 93.

[9]

Xu H J, Zhu F F, Shen Y Y, Wan X, Feng Y S. Tetrahedron, 2012, 68: 4145.

[10]

Taniya K, Mori R, Okemoto A, Horie T, Ichihashi Y, Nashiyama S. Catal. Today., 2018, 307: 293.

[11]

Liu C H, Wang Z, Xiao L Y, Mukadas, Zhu D S, Zhao Y L. Org. Lett., 2018, 20: 4862.

[12]

Li X Z, Cao R, Lin Q. Catal. Commun., 2015, 63: 79.

[13]

Tao G H, He L, Liu W S, Xu L, Xiong W, Wang T, Kou Y. Green. Chem., 200, 8: 639.

[14]

Fukumoto K, Yoshizawa M, Ohno H. J. Am. Chem. Soc., 2005, 127: 2398.

[15]

Tao G H, He L, Sun N, Kou Y. Chem. Commun., 2005, 36: 3562.

[16]

Zhang Z S, Kang N, Wang J Y, Sui H, He L, Li X G. Chem. Eng. Sci.,2018, 2018, 181: 264.

[17]

Luo S Z, Mi X L, Zhang L, Liu S, Xu H, Cheng J P. Angew. Chem. Int. Edit., 200, 45: 3093.

[18]

González L, Escorihuela J, Altava B, Burguete M I, Luis S V. Eur. J. Org. Chem., 2014, 2014: 5356.

[19]

Jiang J F, Mu X Y, Qiao J, Su Y, Qi L. Talanta., 2017, 175: 451.

[20]

Tang F, Zhang Q L, Ren D D, Nie Z, Liu Q, Yao S Z. J. Chro-matogr. A, 2010, 1217: 4669.

[21]

Usman M, Huang H, Li J, Hillestad M, Deng L Y. Ind. Eng. Chem. Res., 201, 55: 12080.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/