A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability

Qing Cai , Chunyan Qiao , Jun Ning , Xinxin Ding , Haoyang Wang , Yanmin Zhou

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 908 -915.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 908 -915. DOI: 10.1007/s40242-019-9177-3
Article

A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability

Author information +
History +
PDF

Abstract

A bone morphogenetic protein-2(BMP-2) derived synthetic oligopeptide, S[PO4]KIPKASSVPTELSAI-STLYLDDD(P24), has shown great potential for facilitating bone regeneration. However, P24 cannot be directly used onto bone defects, while a continuous sustained delivery of P24 may lead to a better formation of bone tissue. Based on this issue, we have developed a sustained delivery system incorporating P24-loaded poly(lactide-co-glycolide) (PLGA) microspheres and nano-hydroxyapatite(n-HA) into the composite hydrogel. The P24-contained compound material was characterized with NMR, FTIR and SEM to demonstrate the formation of compound structure containing P24, PLGA and n-HA. A continuous drug release of P24 was observed for over 60 d that evidently enhanced the efficiency in promoting the proliferation of MC3T3-E1 cells and the secrete of alkaline phosphatase(ALP) in vitro. Moreover, the osteoinduction effect of the hydrogel system with P24 peptide microspheres was demonstrated in vivo and manifested by the result of immunohistochemistry. This novel injectable composite hydrogel is expected to be applied to improving the bone defect treatment in bone tissue engineering.

Keywords

BMP-2 derived peptide / Hydrogel / PLGA microsphere / Osteogenesis / Tissue engineering

Cite this article

Download citation ▾
Qing Cai, Chunyan Qiao, Jun Ning, Xinxin Ding, Haoyang Wang, Yanmin Zhou. A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability. Chemical Research in Chinese Universities, 2019, 35(5): 908-915 DOI:10.1007/s40242-019-9177-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Russell N, Oliver R A, Walsh W R. Biomaterials, 2013, 34: 8185.

[2]

Zhang Y, Venugopal J R, El-Turki A, Ramakrishna S, Su B, Lim C T. Biomaterials, 2008, 29: 4314.

[3]

Shapiro J M, Oyen M L. JOM, 2013, 65: 505.

[4]

Park H, Temenoff J S, Tabata Y, Caplan A I, Mikos A G. Biomaterials, 2007, 28: 3217.

[5]

Park K M, Joung Y K, Park K D, Sang Y L, Lee M C. Macromolecular Research, 2008, 16: 517.

[6]

Fan L, Li M, Gong Y, Kai P, Xie W. Journal of Applied Polymer Science, 2012, 125: 829.

[7]

Peng Y, Han B, Liu W, Xu X. Carbohydr. Res., 2005, 340: 1846.

[8]

Shao K, Han B, Dong W, Song F, Liu W, Liu W. Journal of Ocean University of China, 2015, 14: 888.

[9]

Luo P, Nie M, Wen H, Xu W, Fan L, Cao Q. International Journal of Biological Macromolecules, 2018, 113: 1024.

[10]

Lee J E, Kim S E, Kwon I C, Ahn H J, Cho H, Lee S H, Kim H J, Seong S C, Lee M C. Artificial Organs, 2015, 28: 829.

[11]

Joung Y K, Choi J H, Park K M, Park K D. Biomed. Mater, 2007, 2: 269.

[12]

Yang C H, Huang K S, Grumezescu A M, Wang C Y, Tzeng S C, Chen S Y, Lin Y H, Lim Y S. Electrophoresis, 2014, 35: 316.

[13]

Lee K Y, Mooney D J. Chemical Reviews, 2001, 101: 1869.

[14]

Tessmar J K, Achim M G. Advanced Drug Delivery Reviews, 2007, 59: 274.

[15]

Loewe C, Cejna M, Schoder M, Thurnher M M, Lammer J, Thurnher S A. J. Vasc. Interv. Radiol., 2002, 13: 61.

[16]

Wang E A, Rosen V, D’Alessandro J S, Bauduy M, Cordes P, Harada T, Israel D I, Hewick R M, Kerns K M, Lapan P. P. Natl. Acad Sci. USA, 1990, 87: 2220.

[17]

Oryan A, Alidadi S, Moshiri A, Bighamsadegh A. Biofactors, 2015, 40: 459.

[18]

Saito A, Suzuki Y, Ogata S I, Ohtsuki C, Tanihara M. Biochim. Biophys. Acta, 2003, 1651: 60.

[19]

Li J, Hong J, Zheng Q, Guo X, Lan S, Cui F, Pan H, Zou Z, Chen C. Journal of Orthopaedic Research, 2011, 29: 1745.

[20]

Wang L, Lu S, Lam J, Kasper F K, Mikos A G. Tissue Eng. Part C: Methods, 2015, 21: 263.

[21]

Karageorgiou V, Kaplan D. Biomaterials, 2005, 26: 5474.

[22]

Xia P, Wang S, Qi Z, Zhang W, Sun Y. Nanomedicine and Biotechnology, 2019, 47: 1662.

[23]

Nonsuwan P, Matsugami A, Hayashi F, Hyon S H, Matsumura K. Carbohydrate Polymers, 2019, 204: 131.

[24]

Yu F, Cao X, Du J, Wang G, Chen X. ACS Applied Materials & Interfaces, 2015, 7: 24023.

[25]

Frohbergh M E, Katsman A, Botta G P, Lazarovici P, Schauer C L, Wegst U G K, Lelkes P I. Biomaterials, 2012, 33: 9167.

[26]

Jejurikar A, Lawrie G, Martin D, Grøndahl L. Biomedical Materials, 2011, 6: 025010.

[27]

Chen Y, Liu X, Liu R, Gong Y, Wang M, Huang Q, Feng Q, Yu B. Theranostics, 2017, 7: 1072.

[28]

Pan H, Zheng Q, Guo X, Wu Y, Wu B. Colloids & Surfaces B, Biointerfaces, 201, 142: 1.

[29]

Liu X, Yu B, Huang Q, Liu R, Feng Q, Cai Q, Mi S. International Journal of Biological Macromolecules, 201, 93: 314.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/