Crystal Structures and Electrochemical Properties of R1.5Ca1.5MgNi14(R=Nd, Gd and Er) Hydrogen Storage Alloys

Jiahe Zang , Qing’an Zhang , Dalin Sun

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1040 -1045.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1040 -1045. DOI: 10.1007/s40242-019-9173-7
Article

Crystal Structures and Electrochemical Properties of R1.5Ca1.5MgNi14(R=Nd, Gd and Er) Hydrogen Storage Alloys

Author information +
History +
PDF

Abstract

Ca3MgNi14, Nd1.5Ca1.5MgNi14, Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 alloys were prepared by high frequency induction melting and sintering. Characterization and analysis were performed by X-ray diffraction/Rietveld full-spectrum fitting, gaseous P-C-T hydrogen storage test and electrochemical properties tests. It can be found that all alloys consist of Gd2Co7-type 3R phase and Ce2Ni7-type 2H phase. Although the hydrogen storage capacities of Nd1.5Ca1.5MgNi14, Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 decrease to some extent compared to that of Ca3MgNi14, their equilibrium pressures for absorption and desorption increase markedly. Moreover, R1.5Ca1.5MgNi14 alloys have better cycling stabilities and high-rate discharge(HRD) properties as compared to Ca3MgNi14. The hydrogen diffusion in alloy electrodes is the main factor to influence the HRD performance.

Keywords

Hydrogen storage alloy / Crystal structure / Electrochemical performance / High-rate discharge / Element substitution

Cite this article

Download citation ▾
Jiahe Zang, Qing’an Zhang, Dalin Sun. Crystal Structures and Electrochemical Properties of R1.5Ca1.5MgNi14(R=Nd, Gd and Er) Hydrogen Storage Alloys. Chemical Research in Chinese Universities, 2019, 35(6): 1040-1045 DOI:10.1007/s40242-019-9173-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiao L, Chu W, Sun W J, Xue Y, Jiang C F. Chem. Res. Chinese Universities, 2017, 33(3): 422.

[2]

Zhou X F, Zhou Y B, Tang C M. Chem. J. Chinese Universities, 2019, 40(3): 473.

[3]

Erika T, Sebastian C, Fernando Z, Verónica D. Int. J. Hydrogen Energy, 201, 41(43): 19684.

[4]

Liu J, Han S, Li Y, Zhang L, Zhao Y, Yang S, Liu B. Int. J. Hydrogen Energy, 201, 41(44): 20261.

[5]

Xue C, Zhang L, Fan Y, Fan G, Liu B, Han S. Int. J. Hydrogen Energy, 2017, 42(9): 6051.

[6]

Liu J, Han S, Han D, Li Y, Yang S, Zhang L, Zhao Y. J. Power Sources, 2015, 287: 237.

[7]

Kadir K, Sakai T, Uehara I. J. Alloys Compd., 1999, 287: 264.

[8]

Kadir K, Sakai T, Uehara I. J. Alloys Compd., 2000, 302(1/2): 112.

[9]

Chen J, Takeshita H T, Tanaka H, Kuriyama N, Sakai T, Uehara I, Haruta M. J. Alloys Compd., 2000, 302(1/2): 304.

[10]

Xin G, Yuan H, Yang K, Jiang L, Liu X, Wang S. Int. J. Hydro-gen Energy, 201, 41(46): 21261.

[11]

Si T Z, Zhang Q A, Pang G, Liu D M, Liu N. Int. J. Hydrogen Energy, 2009, 34(3): 1483.

[12]

Zhang Q A, Pang G, Si T Z, Liu D M. Acta Mater., 2009, 57(6): 2002.

[13]

Zhang Q A, Zhao G P, Si T Z. Int. J. Hydrogen Energy, 200, 31(9): 1182.

[14]

Zhang P, Liu Y, Tang R, Zhu J, Wei X, Liu S, Yu G. Electrochim. Acta, 200, 51(28): 6400.

[15]

Xin G, Yuan H, Yang K, Jiang L, Liu X, Wang S. RSC Adv., 201, 6(26): 21742.

[16]

Belgacem Y B, Khaldi C, Lamloumi J, Takenouti H. J. Solid State Electrochem., 201, 20(7): 1949.

[17]

Chebab S, Abdellaoui M, Latroche M, Paul-Boncour V. J. Renew. Sustain. Energy, 201, 5(3): 12.

[18]

Chen J, Kuriyama N, Takeshita H T, Tanaka H, Sakai T, Haruta M. Electrochem. Solid-state Lett., 2000, 3(6): 249.

[19]

Zang J H, Zhang Q A, Sun D L. J. Alloys Compd., 2019, 771: 711.

[20]

Zang J H, Zhang Q A, Sun D L. J. Alloys Compd., 2019, 794: 45.

[21]

Lv W, Yuan J, Zhang B, Wu Y. J. Alloys Compd., 2018, 730: 360.

[22]

Si T Z, Zhang Q A, Liu N. Int. J. Hydrogen Energy, 2008, 33(6): 1729.

[23]

Liu Y, Cao Y, Huang L, Gao M, Pan H. J. Alloys Compd., 2011, 509(3): 675.

[24]

Izumi F. Mater. Sci. Forum, 2000, 321: 198.

[25]

Zhang Q, Fang M, Si T, Fang F, Sun D, Ouyang L, Min Z. J. Phys. Chem. C, 2010, 114(26): 11686.

[26]

Buschow K H J, Van Der Goot A S. J. Less Common Metals, 1970, 22(4): 419.

[27]

Sakaki K, Terashita N, Tsunokake S, Nakamura Y, Akiba E. J. Phys. Chem. C, 2012, 116(36): 19156.

[28]

Dymek M, Nowak M, Jurczyk M, Bala H. J. Alloys Compd., 2018, 749: 534.

[29]

Zhang L, Han S, Li Y, Liu J, Zhang J, Wang J, Yang S. Int. J. Hydrogen Energy, 2013, 38(25): 10431.

[30]

Zhang F, Luo Y, Deng A, Tang Z, Kang L, Chen J. Electrochim. Acta, 200, 52(1): 24.

[31]

Volodin A A, Wan C, Denys R V, Tsirlina G A, Tarasov B P, Fichtner M, Ulmer U, Yu Y, Nwakwuo C C, Yartys V A. Int. J. Hydrogen Energy, 201, 41(23): 9954.

[32]

Li Y, Wang C, Dong Z, Wang J, Yang S, Ke D, Han S. Int. J. Hydrogen Energy, 2017, 42(30): 19148.

[33]

Zhang Y H, Cai Y, Zhao C, Zhai T T, Zhang G F, Zhao D L. Int. J. Hydrogen Energy, 2012, 37(19): 14590.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/