Preparation and Pseudo-capacitance Performance of NiCo2O4 Nanosheets

Qi Zhou , Sunzhi Jiao , Bin Zheng , Zhiyang Li

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 957 -961.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 957 -961. DOI: 10.1007/s40242-019-9172-8
Article

Preparation and Pseudo-capacitance Performance of NiCo2O4 Nanosheets

Author information +
History +
PDF

Abstract

Ternary nickel cobaltite(NiCo2O4), as a promising electrode material for supercapacitors, has attracted increasing attention for its excellent electrochemical properties. In this study, novel NiCo2O4 nanosheets were rationally designed and prepared using dealloying process, followed by an oxidation treatment. The as-prepared sample was characterized by microstructural and electrochemical techniques in view of its possible application in supercapacitors. The as-prepared sample exhibited high specific capacitance and excellent durability. The specific capacitance reached 663 F/g at 1 A/g and the rate capacitance high up to 73.6% when the current density increased from 1 A/g to 20 A/g. After 5000 cycles of galvanostatic charge-discharge durability test at 4 A/g, the capacity retention rate was 82.1%. The results indicate that versatile dealloying can be used to prepare robust electrode for supercapacitor application.

Keywords

Rapid-solidification / Dealloying / Nickel cobaltate / Nanosheet / Pseudo-capacitance

Cite this article

Download citation ▾
Qi Zhou, Sunzhi Jiao, Bin Zheng, Zhiyang Li. Preparation and Pseudo-capacitance Performance of NiCo2O4 Nanosheets. Chemical Research in Chinese Universities, 2019, 35(6): 957-961 DOI:10.1007/s40242-019-9172-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Simon P, Gogotsi Y. Nature Materials, 2008, 7(11): 845.

[2]

Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38(9): 2520.

[3]

Snook G A, Kao P, Best A S. J. Power Sources, 2011, 196(1): 1.

[4]

Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z. Adv. Mater., 2017, 29(11): 1604569.

[5]

Zou Y, Cai C, Xiang C, Huang P, Chu H, She Z, Xu F, Sun L, Kraatz H B. Electrochim. Acta, 2018, 261: 537.

[6]

Bi R R, Wu X L, Cao F F, Jiang L Y, Guo Y G, Wan L J. The Journal of Physical Chemistry C, 2010, 114(6): 2448.

[7]

Xia H, Meng Y S, Yuan G, Cui C, Lu L. Electrochemical and Solid-state Letters, 2012, 15(4): A60.

[8]

Zhai S, Wang C, Karahan H E, Wang Y, Chen X, Sui X, Huang Q, Liao X, Wang X, Chen Y J S. Small, 2018, 14(29): 1800582.

[9]

Arunachalam R, Prataap R K V, Raj R P, Mohan S, Vijayakumar J, Peter L, Al Ahmad M. Surface Engineering, 2019, 35(2): 103.

[10]

Liu M, Wang X, Zhu D, Li L, Duan H, Xu Z, Wang Z, Gan L. Chem. Eng. J., 2017, 308: 240.

[11]

Ouyang Y, Xia X, Ye H, Wang L, Jiao X, Lei W, Hao Q. ACS Applied Materials & Interfaces, 2018, 10(4): 3549.

[12]

Jiao Y, Hong W, Li P, Wang L, Chen G. Appl. Catal. B: Environ., 2019, 244: 732.

[13]

Pang H, Li X, Zhao Q, Xue H, Lai W Y, Hu Z, Huang W. Nano Energy, 2017, 35: 138.

[14]

Qiu D, Ma X, Zhang J, Zhao B, Lin Z. Chem. Phys. Lett., 2018, 710: 188.

[15]

Shi Z, Xing L, Liu Y, Gao Y, Liu J. Carbon, 2018, 129: 819.

[16]

Raj S, Srivastava S K, Kar P, Roy P. Electrochim. Acta, 2019, 302: 327.

[17]

Chen S, Zhu J, Wu X, Han Q, Wang X. ACS Nano, 2010, 4(5): 2822.

[18]

Chi H Z, Wu Y Q, Shen Y K, Zhang C, Xiong Q, Qin H. Electrochim. Acta, 2018, 289: 158.

[19]

Xie Y, Yang C, Chen P, Yuan D, Guo K. J. Power Sources, 2019, 425: 1.

[20]

Zhang G, Lou X W. Adv. Mater., 2013, 25(7): 976.

[21]

Wang T, Guo Y, Zhao B, Yu S, Yang H P, Lu D, Fu X Z, Sun R, Wong C P. J. Power Sources, 2015, 286: 371.

[22]

Bhagwan J, Nagaraju G, Ramulu B, Sekhar S C, Yu J S. Electrochim. Acta, 2019, 299: 509.

[23]

Chen W C, Hu C C, Wang C C, Min C K. J. Power Sources, 2004, 125(2): 292.

[24]

Li Y, Han X, Y T F, He Y B, Li X F. J. Energy Chem., 2019, 31: 54.

[25]

Fu H Y, Wang Z Y, Li Y H, Zhang Y F. Mater. Res. Innov., 2015, 19(Suppl.4): S255.

[26]

Jokar E, Iraji Zad A, Shahrokhian S. J. Solid State Electr., 2015, 19(1): 269.

[27]

Zhang Y, Wang S W, Gao H L, Zhao S Q. Chinese Journal of Power Sources, 2018, 42(2): 212.

[28]

Weissmüller J, Sieradzki K. Mrs. Bull., 2018, 43(1): 14.

[29]

Wang N, Sun B L, Zhao P, Yao M, Hu W C, Komarneni S. Chem. Eng. J., 2018, 345: 31.

[30]

Feng X, Huang Y, Li C, Chen X, Zhou S, Gao X, Chen C. Chem. Eng. J., 2019, 368: 51.

[31]

Zhou Q, Zheng B, Wang Y F, Zheng S Z. J. Materials Science Engineering of Powder Metallurgy, 201, 21(5): 795.

[32]

Zhou Q, Zheng B, Li Z Y, Wang Y F, Feng J W. Chinese Journal of Inorganic Chemistry, 2017, 33(8): 1416.

[33]

Pang M J, Jiang S, Long G H, Ji Y, Han W, Wang B, Liu X L, Xi Y L, Xu F Z, Wei G D. RSC Advances, 201, 6(72): 67839.

[34]

Sun J, Wang W, Yu D. J. Electron. Mater., 2019, 48(6): 3833.

[35]

Li W, Yang F, Hu Z, Liu Y. J. Alloy. Compd., 2018, 749: 305.

[36]

Fu H Y, Wang Z Y, Li Y H, Zhang Y F. Mater. Res. Innov., 2015, 19: S255.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/