Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment

Shuqin Yang , Yunchai Wang , Yuan Li , Laizhou Song

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1052 -1057.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1052 -1057. DOI: 10.1007/s40242-019-9169-3
Article

Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment

Author information +
History +
PDF

Abstract

In order to improve the electrochemical kinetic performances of La-Mg-Ni-based alloy, complex surface modification of Ni with excellent catalytic activity and conducting polymer polypyrrole(PPy) was performed via electroless plating method. FESEM images revealed that the complex Ni-PPy treatment resulted in more micropores at the alloy surface, with Ni particles and cotton fiber-shape PPy microspheres attached. Both the larger surface area induced by the micropore and the higher catalytic activity and conductivity on account of the dispersed Ni particles/PPy microspheres promoted the electrode reaction, thereby increasing the discharge capacity of the modified alloy electrode. Electrochemical impedance spectroscopy(EIS) and linear polarization results showed that the Ni-PPy treatment decreased the charge-transfer resistance and increased the exchange current density greatly, far more than the single-component Ni or PPy treatment. Consequently, a notable improvement in high rate dischargeability(HRD) was observed, and at a high discharge current density of 1800 mA/g, the HRD of the modified electrode increased by 10.4% compared with that of the bare electrode.

Keywords

Ni/MH battery / La-Mg-Ni-based alloy / Complex surface treatment / Ni-PPy / Electrochemical kinetic characteristic

Cite this article

Download citation ▾
Shuqin Yang, Yunchai Wang, Yuan Li, Laizhou Song. Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment. Chemical Research in Chinese Universities, 2019, 35(6): 1052-1057 DOI:10.1007/s40242-019-9169-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y F, Pan H G, Gao M X, Wang Q D. J. Mater. Chem., 2011, 21(13): 4743.

[2]

Lv W, Yuan J G, Zhang B, Wu Y. J. Alloy Compd., 2018, 730(1): 360.

[3]

Wei F S, Cai X, Zhang Y, Wei F N. Int. J. Electrochem. Sci., 2017, 12(1): 429.

[4]

Werwinski M, Szajek A, Marczynska A, Smardz L, Nowak M, Jurczyk M. J. Alloy Compd., 2018, 763(1): 951.

[5]

Li R F, Yu R H, Liu X F, Wan J, Wang F. Electrochim. Acta, 2015, 158(1): 89.

[6]

Jiang W Q, Qin C S, Zhu R R, Guo J. J. Alloy Compd., 2013, 565(1): 37.

[7]

Li P, Zhang J, Zhai F Q, Ma G, Xu L, Qu X H. J. Rare Earth., 2015, 33(4): 417.

[8]

Li W, Zhang B, Yuan J G, Wu Y. Int. J. Hydrogen Energy, 201, 41(27): 11767.

[9]

Xue C J, Zhang L, Fan Y P, Xue C J, Zhang L, Fan Y P, Fan G X, Liu B Z, Han S M. Int. J. Hydrogen Energy, 2017, 42(9): 6051.

[10]

Lim K L, Liu Y N, Zhang Q A, Lin K S, Chan S L I. J. Alloy Compd., 201, 661(1): 274.

[11]

Huang J L, Qiu S J, Chu H L, Zou Y J, Xiang C L, Zhang H Z, Xu F, Sun L X, Ouyang L Z, Zhou H Y. Int. J. Hydrogen Energy, 2015, 40(41): 14173.

[12]

Qu X, Ma L, Jin C, Zhao X, Ding Y. Rare Metal Mat. Eng., 2011, 40(3): 543.

[13]

Yuan H P, Yang K, Jiang L J, Liu X P, Wang S M. Int. J. Hydrogen Energy, 2015, 40(13): 4623.

[14]

Nakatsuji K., Ohyama H., US20110033748A1, 2011

[15]

Xiao L L, Wang Y J, Liu Y, Song D W, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2008, 33(14): 3925.

[16]

Ngene P, Westerwaal R J, Sachdeva S, Haije W, de Smet L C P M, Dam B. Angew. Chem. Int. Ed., 2014, 53(1): 12081.

[17]

Sun L, Lin J, Liang F, Cao Z, Wang L. Mater. Lett., 2015, 161(1): 686.

[18]

Ananth M V, Ananthi P. Int. J. Hydrogen Energy, 2008, 33(20): 5779.

[19]

Matssuoka M, Asai K, Asai K, Fukumoto Y, Iwakura C. J. Alloy Compd., 1993, 192(1): 149.

[20]

Ren J, Williams M, Lototskyy M, Davids W, Ulleberg Ø. Int. J. Hydrogen Energy, 2010, 35(16): 8626.

[21]

Ding H L, Han S M, Liu Y, Hao J S, Li Y, Zhang J W. Int. J. Hydrogen Energy, 2009, 34(23): 9402.

[22]

Wang Y B, Tang W K, Wang F, Ding C P, Xu S M, Yu R H. Int. J. Hydrogen Energy, 2018, 43(6): 3244.

[23]

Li Y, Tao Y, Ke D D, Ma Y F, Han S M. Appl. Surf. Sci., 2015, 357(B): 1714.

[24]

Zadorozhnyy M Y, Klyamkin S N, Strugova D V, Olifirov L K, Milovzorov G S, Kaloshkin S D, Kaloshkin S D, Zadorozhnyy V Y. Int. J. Mater. Res., 201, 40(2): 273.

[25]

Reddy A L M, Ramaprabhu S. Int. J. Hydrogen Energy, 200, 31(7): 867.

[26]

Qi Y, Chu H, Xu F, Sun L, Zhang Y, Zhang J, Qiu S J, Yuan H T. Int. J. Hydrogen Energy, 2007, 32(15): 3395.

[27]

Wang B P, Zhao L M, Cai C S, Wang S X. Int. J. Hydrogen Energy, 2014, 39(20): 10374.

[28]

Hu L, Li J P, Yang W. Ionics, 2015, 21(12): 3209.

[29]

Wang Y C, Li Y, Shen W Z, Pei Y R, Liu J J, Che J Y H, Yang S Q, Han S M. J. Solid State Electrochem., 2015, 19(5): 1419.

[30]

Yang S Q, Li Y, Yuan Y J, Dong Z T, Ren K L, Zhao Y M. Chem. Res. Chinese Universities, 2018, 34(4): 604.

[31]

Zhao X Y, Ma L Q, Gao Y J, Ding Y, Shen X D. Int. J. Hydrogen Energy, 2009, 34(4): 1904.

[32]

Wu M S, Wu H R, Wang Y Y, Wan C C. J. Alloy Compd., 2000, 302(1/2): 248.

[33]

Li Y, Hou X W, Wang C X, Cheng L N, Feng X L, Han S M. Int. J. Hydrogen Energy, 2018, 43(10): 5104.

[34]

Chi B, Lin H, Li J B. Int. J. Hydrogen Energy, 2008, 33(18): 4763.

[35]

Notten P H L, Hokkeling P. J. Electrochem. Soc., 1991, 138(7): 1877.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/