Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs

Xiangyang Ren , Sha Xia , Zhiguo Zhang , Xing Meng , Hongmei Yu , Qi Wu , Wenyi Zhang , Aiwu Li , Han Yang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1058 -1061.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1058 -1061. DOI: 10.1007/s40242-019-9151-0
Article

Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs

Author information +
History +
PDF

Abstract

Two-dimensional(2D) materials with a high density and low power consumption have become the most popular candidates for next-generation semiconductor electronic devices. As a prototype 2D material, graphene has attracted much attention owing to its stability and ultrahigh mobility. However, zero band gap of graphene leads to very low on-off ratios and thus limits its applications in electronic devices, such as transistors. Although some new 2D materials and doped graphene have nonzero band gaps, the electronic mobility is sacrificed. In this study, to open the band gap of graphene with high electronic mobility, the structure and property of BN-doped graphene were evaluated using first-principles calculations. The formation energies indicate that the six-membered BN rings doped graphene has the most favorable configuration. The band structures show that the band gaps can be opened by such type of doping. Also, the Dirac-cone-like band dispersion of graphene is mostly inhibited, ensuring high electronic mobility. Therefore, codoping BN into graphene might provide 2D materials with nonzero band gaps and high electronic mobility.

Keywords

First-principle calculation / Doping / Optoelectronic property / Mobility

Cite this article

Download citation ▾
Xiangyang Ren, Sha Xia, Zhiguo Zhang, Xing Meng, Hongmei Yu, Qi Wu, Wenyi Zhang, Aiwu Li, Han Yang. Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs. Chemical Research in Chinese Universities, 2019, 35(6): 1058-1061 DOI:10.1007/s40242-019-9151-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

[2]

Xu M, Liang T, Shi M, Chen H. Chem. Rev, 2013, 113(5): 3766.

[3]

Autore M, Li P, Dolado I, Alfaro-Mozaz F J, Esteban R, Atxabal A, Casanova F, Hueso L E, Alonso-González P, Aizpurua J, Nikitin A Y, Vélez S, Hillenbrand R. Light: Sci. Appl., 2018, 7: 17172.

[4]

Abate Y, Gamage S, Li Z, Babicheva V, Javani M H, Wang H, Cronin S B, Stockman M I. Light: Sci. Appl., 2016, 5: e16162.

[5]

Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L. Light: Sci. Appl., 2018, 7(1): 17126.

[6]

Wang D, Han D, Li X B, Chen N K, West D, Meunier V, Zhang S B, Sun H B. Phys. Rev. B, 2017, 96(15): 155424.

[7]

Yang J, Wang Z, Wang F, Xu R J, Tao J, Zhang S, Qin Q H, Luther-Davies B, Jagadish C, Yu Z F, Lu Y R. Light: Sci. Appl., 2016, 5: e16046.

[8]

Dumcenco D O, Kobayashi H, Liu Z, Huang Y S, Suenaga K. Nat. Commun., 2013, 4: 1351.

[9]

Chen W, Zhang S P, Kang M, Liu W K, Ou Z W, Li Y, Zhang Y X, Guan Z Q, Xu H X. Light: Sci. Appl., 2018, 7(1): 56.

[10]

Kang J. H., Cao W., Xie X. J., Sarkar D., Liu W., Banerjee K., SPIE, 2014, 908305

[11]

Zhu L X, Liu F Y, Lin H T, Hu J J, Yu Z F, Wang X R, Fan S H. Light: Sci. Appl., 2016, 5: e16052.

[12]

Wang D, Li X B, Han D, Tian W Q, Sun H B. Nano Today, 2017, 16: 30.

[13]

Wang X P, Li X B, Chen N K, Zhao J H, Chen Q D, Sun H B. Phys. Chem. Chem. Phys., 2018, 20(10): 6945.

[14]

Wang D, Li X B, Sun H B. Nanoscale, 2017, 9(32): 11619.

[15]

Zheng H, Li X B, Chen N A K, Xie S Y, Tian W Q, Chen Y P, Xia H, Zhang S B, Sun H B. Phys. Rev. B, 2015, 92(11): 115307.

[16]

Chen J H, Tan J, Wu G X, Zhang X J, Xu F, Lu Y Q. Light: Sci. Appl., 2019, 8(1): 8.

[17]

Kang P, Kim K H, Park H G, Nam S. Light: Sci. Appl., 2018, 7(1): 17.

[18]

Zhu Y B, Li Z Y, Hao Z, Dimarco C, Maturavongsadit P, Hao Y F, Lu M, Stein A, Wang Q, Hone J, Yu N F, Lin Q. Light: Sci. Appl., 2018, 7(1): 67.

[19]

Lee W H, Park J, Sim S H, Jo S B, Kim K S, Hong B H, Cho K. Adv. Mater., 2011, 23(15): 1752.

[20]

Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S. Nat. Nanotechnol, 2010, 5(8): 574.

[21]

Rodrigo D, Tittl A, Limaj O, Abajo F J G D, Pruneri V, Altug H. Light: Sci. Appl., 2017, 6: e16277.

[22]

Zhai F, Feng Y, Zhou K, Wang L, Zheng Z, Feng W. J. Mater. Chem. C, 2019, 7(8): 2146.

[23]

Li Z, Wang L, Li Y, Feng Y, Feng W. Compos. Sci. Technol, 2019, 179: 10.

[24]

Dong L, Feng Y, Wang L, Feng W. Chem. Soc. Rev, 2018, 47(19): 7339.

[25]

Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81(1): 109.

[26]

Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906.

[27]

Morales-Narvaez E, Merkoci A. Adv. Mater., 2019, 31(6): 1805043.

[28]

Xie S Y, Li X B, Sun Y Y, Zhang Y L, Han D, Tian W Q, Wang W Q, Zheng Y S, Zhang S B, Sun H B. Carbon, 2013, 52: 122.

[29]

Gao X F, Wei Z Q, Meunier V, Sun Y Y, Zhang S B B. Chem. Phys. Lett., 2013, 555: 1.

[30]

Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4(4): 1790.

[31]

Pan L, Que Y, Chen H, Wang D, Li J, Shen C, Xiao W, Du S, Gao H, Pantelides S T. Nano Lett., 2015, 15(10): 6464.

[32]

Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S. Nano Lett., 2013, 13(4): 1834.

[33]

Wang L F, Wu B, Chen J S, Liu H T, Hu P A, Liu Y Q. Adv. Mater., 2014, 26(10): 1559.

[34]

Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L. Nat. Mater., 2010, 9: 430.

[35]

Wang H, Zhao C, Liu L, Xu Z, Wei J, Wang W, Bai X, Wang E. Nano Research, 2016, 9(5): 1221.

[36]

Uddin M R, Majety S, Li J, Lin J Y, Jiang H X. J. Appl. Phys., 2014, 115(9): 093509.

[37]

Zhang M, Gao G, Kutana A, Wang Y, Zou X, Tse J S, Yakobson B I, Li H, Liu H, Ma Y. Nanoscale, 2015, 7(28): 12023.

[38]

Guilhon I, Marques M, Teles L K, Bechstedt F. Phys. Rev. B, 2017, 95(3): 035407.

[39]

Ren X Y, Xia S, Li X B, Chen N K, Wang X P, Wang D, Chen Z G, Zhang S, Sun H B. Phys. Chem. Chem. Phys., 2018, 20(35): 23106.

[40]

Hohenberg P, Kohn W. Phys. Rev., 1964, 136(3B): B864.

[41]

Kohn W, Sham L J. Phys. Rev., 1965, 140(4A): A1133.

[42]

Kresse G, Furthmüller J. Phys. Rev. B, 1996, 54(16): 11169.

[43]

Blöchl P E. Phys. Rev. B, 1994, 50(24): 17953.

[44]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77(18): 3865.

[45]

Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T, Pennycook S J. Nature, 2010, 464(7288): 571.

[46]

Chen N K, Li X B, Bang J, Wang X P, Han D, West D, Zhang S B, Sun H B. Phys. Rev. Lett., 2018, 120(18): 185701.

[47]

Chen N K, Li X B, Wang X P, Tian W Q, Zhang S B, Sun H B. Acta Mater., 2018, 143: 102.

[48]

Li X B, Liu X Q, Han X D, Zhang S B. Phys. Status Solidi B, 2012, 249(10): 1861.

[49]

Li X B, Chen N K, Wang X P, Sun H B. Adv. Funct. Mater., 2018, 28(44): 1803380.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/