Direct Pyrolysis of Molybdophosphate-based Ionic Salt for One-step Synthesis of N,P Co-doped Carbon/MoO3-x Hybrids with Superior Lithium Storage Performance

Lifeng Zhang , Kechao Shen , Yongtao Jiang , Yu Guo , Yi Liu , Shouwu Guo

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 842 -847.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 842 -847. DOI: 10.1007/s40242-019-9149-7
Article

Direct Pyrolysis of Molybdophosphate-based Ionic Salt for One-step Synthesis of N,P Co-doped Carbon/MoO3-x Hybrids with Superior Lithium Storage Performance

Author information +
History +
PDF

Abstract

N,P co-doped carbon/MoO3-x hybrids(NPC/MoO3-x) were synthesized via one-step pyrolysis of molyb-dophosphate-based ionic salt precursor. Doped carbon and oxygen vacancies(OVs) were synchronously introduced into the NPC/MoO3-x hybrids without any other redundant procedure. As anodes for lithium-ion batteries, the NPC/MoO3-x hybrids delivered a high initial Coulombic efficiency(ICE) of 81% as well as high charge capacity of 516 mA·h/g after 100 cycles at 1 A/g, indicating the excellent reversibility and rate capability. The enhanced lithium storage performance was attributed to the rational combination of surface engineering and OVs, which is beneficial to the more active sites and fast ionic/electronic transport.

Keywords

Lithium ion battery / Anode / Molybdenum oxide / Doped carbon / Oxygen vacancy

Cite this article

Download citation ▾
Lifeng Zhang, Kechao Shen, Yongtao Jiang, Yu Guo, Yi Liu, Shouwu Guo. Direct Pyrolysis of Molybdophosphate-based Ionic Salt for One-step Synthesis of N,P Co-doped Carbon/MoO3-x Hybrids with Superior Lithium Storage Performance. Chemical Research in Chinese Universities, 2019, 35(5): 842-847 DOI:10.1007/s40242-019-9149-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lem-mon J P. Chem. Rev., 2011, 111: 3577.

[2]

Goodenough J B. Energy Environ. Sci., 2014, 7: 14.

[3]

Xie D, Xia X H, Zhong Y, Wang Y D, Wang D H, Wang X L, Tu J P. Adv. Energy Mater., 2016, 7: 1601804.

[4]

Poizot P L S G, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Natrue, 2000, 407: 496.

[5]

Zhu C, Mu X, van A P A, Yu Y, Maier J. Angew. Chem. Int. Ed., 2014, 45: 2152.

[6]

Xiao Q, Fan Y, Wang X, Susantyoko R A, Zhang Q. Energy En-viron. Sci., 2014, 7: 655.

[7]

He P, Yu H, Li D, Zhou H. J. Mater. Chem., 2012, 22: 3680.

[8]

Guo Q B, Ma Y F, Chen T T, Xia Q Y, Yang M, Xia H, Yu Y. ACS Nano, 2017, 11: 12658.

[9]

Zhang J, Shi Y, Ding Y, Peng L L, Zhang W K, Yu G H. Adv. Energy Mater., 2017, 7: 1602876.

[10]

Chen L, Jiang H, Jiang H B, Zhang H X, Guo S J, Hu Y J, Li C Z. Adv. Energy Mater., 2017, 7: 1602782.

[11]

Xue D F, Zhu D Z, Xiong W, Cao T C, Wang Z W, Lv Y K, Li L C, Liu M X, Gan L H. ACS Sustainable Chem. Eng., 2019, 7: 7024.

[12]

Wu H L, Xia L, Ren J, Zheng Q J, Xu C G, Lin D M. J. Mater. Chem. A, 2017, 5: 20458.

[13]

Song Z Y, Duan H, Li L C, Zhu D Z, Cao T C, Lv Y K, Xiong W, Wang Z W, Liu M X, Gan L H. Chem. Eng. J., 2019, 372: 1216.

[14]

Zhu L W, Wu J, Zhang Q, Li X K, Li Y M, Cao X B. J. Colloid Interf. Sci., 2017, 510: 32.

[15]

Yan J J, Zhu D Z, Lv Y K, Xiong W, Liu M X, Gan L H. Chin. Chem. Lett., 2019.

[16]

Wang Q D, Li Y M, Wang K, Zhou J T, Zhu L W, Gu L, Hu J, Cao X B. Electrochim. Acta, 2017, 257: 250.

[17]

Xie D, Xia X H, Tang W J, Zhong Y, Wang Y D, Wang D H, Wang X L, Tu J P. J. Mater. Chem. A, 2017, 5: 7578.

[18]

Wang X J, Nesper R, Villevieille C, Novák P. Adv. Energy Mater., 2013, 3: 606.

[19]

Sun Y, Hu X, Luo W, Huang Y. ACS Nano, 2011, 5: 7100.

[20]

Qiu J, Yang Z X, Li Y. J. Mater. Chem. A, 2015, 3: 24245.

[21]

Hu X L, Zhang W, Liu X X, Mei Y N, Huang Y H. Chem. Soc. Rev., 2015, 3: 2376.

[22]

Noerochim L, Wang J Z, Wexler D, Chao Z, Liu H K. J. Power Sources, 2013, 228: 198.

[23]

Meduri P, Clark Ezra, Kim J H, Dayalan E, Sumanasekera G U, Sunkara M K. Nano Lett., 2012, 12: 1784.

[24]

Schaub R, Wahlström E, Rønnau A, Lægsgaard E, Stensgaard I, Besenbacher F. Science, 2003, 299: 377.

[25]

Xu Y, Zhou M, Wang X, Wang C L, Liang L Y, Grote F B, Wu M H, Mi Y, Lei Y. Angew. Chem., 2015, 54: 8892.

[26]

Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V, Dunn B. Nature Mater., 2017, 16: 454.

[27]

Yang C L, Liu X W, Yang Z Z, Gu L, Yu Y. Adv. Mater. Inter-faces, 2016, 3: 1600730.

[28]

Li Y F, Wang D D, An Q Y, Ren B, Rong Y G, Yao Y. J. Mater. Chem. A, 2016, 4: 5402.

[29]

Xu G Q, Liu P, Ren Y R, Huang X B, Peng Z G, Tang Y G, Wang H Y. J. Power Sources, 2017, 361: 1.

[30]

Lin S, Zheng Y, Xu L M, Wang S M. Chem. J. Chinese Universi-ties, 2000, 21(8): 1248.

[31]

Yang H, Qi X, Wen L, Lu C, Cheng G. Ind. Eng. Chem. Res., 2011, 50: 58.

[32]

Liu M X, Gan L H, Xiong W, Xu Z J, Zhu D Z, Chen L W. J. Mater. Chem. A, 2014, 2: 2555.

[33]

Wang C L, Sun L S, Wang X X, Cheng Y, Yin D M, Yuan D X, Li Q, Wang L M. ChemElectroChem, 2017, 4: 2915.

[34]

Liu J, Wei A X, Chen M H, Xia X H. J. Mater. Chem. A, 2018, 6: 3857.

[35]

Li X, Xu J T, Mei L, Zhang Z J, Cui C Y, Liu H K, Ma J M, Dou S X. J. Mater. Chem. A, 2015, 3: 3257.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/