A New Strategy for Improving the Efficiency of Low-temperature Selective Catalytic Reduction of NO x with CH4 via the Combination of Non-thermal Plasma and Ag2O/TiO2 Photocatalyst

Hui Wang , Jiafeng Wang , Lei Zhang , Qinqin Yu , Zewen Chen , Shengji Wu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1062 -1069.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1062 -1069. DOI: 10.1007/s40242-019-9141-2
Article

A New Strategy for Improving the Efficiency of Low-temperature Selective Catalytic Reduction of NO x with CH4 via the Combination of Non-thermal Plasma and Ag2O/TiO2 Photocatalyst

Author information +
History +
PDF

Abstract

In the present work, a remarkable combination of non-thermal plasma and photocatalyst was developed to widen the operating temperature window of selective catalytic reduction(SCR) of NO x with CH4, especially to improve the low-temperature removal efficiency of NO x. It was shown that the operating temperature window was significantly widened. Among all the catalysts prepared, 1%Ag2O/TiO2 showed the highest catalytic activity for NO x removal due to the utilization of near ultraviolet light. The conversion of NO x to N2 over the in-plasma 1%Ag2O/TiO2 photocatalyst at 60 and 300 °C could achieve 31.8% and 53.0%, respectively. The combination mode of plasma and catalyst affected NO x removal efficiency greatly, the in-plasma catalysis outperformed the post-plasma catalytic mode remarkably, signifying the contribution of photocatalytic processes on the catalysts. Meanwhile, the characterizations of the catalyst demonstrated that the morphology and structure of the Ag2O/TiO2 catalyst were unchanged throughout the non-thermal plasma and photocatalytic processes, implying the superior stability of the catalyst.

Keywords

Non-thermal plasma / Photocatalyst / NO x / Ag2O/TiO2 / CH4

Cite this article

Download citation ▾
Hui Wang, Jiafeng Wang, Lei Zhang, Qinqin Yu, Zewen Chen, Shengji Wu. A New Strategy for Improving the Efficiency of Low-temperature Selective Catalytic Reduction of NO x with CH4 via the Combination of Non-thermal Plasma and Ag2O/TiO2 Photocatalyst. Chemical Research in Chinese Universities, 2019, 35(6): 1062-1069 DOI:10.1007/s40242-019-9141-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang S Y, Jiang S P. Natl. Sci. Rev., 2017, 4(2): 163.

[2]

Makogon Y F, Holditch S A, Makogon T Y. J. Petrol. Sci. Eng., 2007, 56(1): 14.

[3]

Zhan S H, Zhang H, Zhang Y, Shi Q, Li Y, Li X J. Appl. Catal. B-Environ., 2017, 203: 199.

[4]

Han S, Ye Q, Cheng S Y, Kang T F, Dai H X. Catal. Sci. Technol., 2017, 7(3): 703.

[5]

Li P X, Zhang R D, Liu N, Royer S. Appl. Catal. B-Environ., 2017, 203: 174.

[6]

Zhang R D, Yang W, Luo N, Li P X, Lei Z G, Chen B H. Appl. Catal. B-Environ., 2014, 146(3): 94.

[7]

Mendes A. N., Lauga V., Capela S., Ribeiro M. F., Costa P. D., Henriques C., Top. Catal., 2016, 59(10–12), 982

[8]

Xu G Y, Ma J Z, He G Z, Yu Y B, Hong H. Appl. Catal. B-Environ., 2017, 207: 60.

[9]

Pan H, Guo Y H, Jian Y F, He C. Energ. Fuel, 2015, 29(8): 5282.

[10]

Li Y F, Su J J, Ma J H, Feng Y, Chen J Q, Li R F. Catal. Commun., 2015, 65: 6.

[11]

Gil B, Janas J, Wloch E, Olejniczak Z, Datka J, Sulikowski B. Catal. Today, 2008, 137(2): 174.

[12]

Chen X M, Zhu A M, C T Au, Shi C. Catal. Lett., 2011, 141(1): 207.

[13]

Kim S S, Sang H C, Sang M L, Hong S C. J. Ind. Eng. Chem., 2012, 18(1): 272.

[14]

Ogura M, Kage S, Hayashi M, Matsukata M, Kikuchi E. Appl. Catal. B-Environ., 2000, 27(4): 213.

[15]

Theinnoi K, Sitshebo S, Houel V, Rajaram R R, Tsolakis A. Energ. Fuel, 2008, 22(6): 4109.

[16]

Rao K N, Ha H P. Appl. Catal. A-Gen., 2012, 433/434(16): 162.

[17]

Xu S C, Li J H, Yang D, Hao J M. J. Phys. Chem. C, 2011, 112: 16052.

[18]

Shi C, Cheng M J, Qu Z P, Bao X H. J. Mol. Catal. A-Chem., 2005, 235(1): 35.

[19]

Mendes A N, Zholobenko V L, Thibault-Starzyk F, Costa P D, Henriques C. Appl. Catal. B-Environ., 2016, 195: 121.

[20]

Wang H, Cao Y Y, Chen Z W, Yu Q Q, Wu S J. Fuel, 2018, 224: 323.

[21]

Lee D H, Lee J O, Kim K T, Song Y H, Kim E, Han H S. Int. J. Hydrogen Energ., 2011, 36(18): 11718.

[22]

Buda I G, Irimiea C, Agheorghiesei C, Chiper A S. IEEE T. Plasma Sci., 2015, 43(2): 572.

[23]

Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S, Lee E S. Plasma Sources Sci. T., 2006, 15: 416.

[24]

Wagner H E, Brandenburg R, Kozlov K V, Morozov A M. Contrib. Plasm. Phys., 2010, 45(5/6): 338.

[25]

Jõgi I, Stamate E, Irimiea C, Schmidt M, Brandenburg R, Hołub M, Bonisławski M, Jakubowski T, Kääriäinen M L, Cameron D C. Fuel, 2015, 144: 137.

[26]

Saloum S, Naddaf M, Alkhaled B. J. Phys. D-Appl. Phys., 2008, 41(4): 045205.

[27]

Zhang S H, Yu X L, Chen L H, Zhang X Y. Chinese Phys. Lett., 2013, 30(8): 085203.

[28]

Li Y Z, Fan Z Y, Shi J W, Liu Z Y, Shangguan W F. Chem. Eng. J., 2014, 241(4): 251.

[29]

Tang X J, Feng F D, Ye L L, Zhang X M, Huang Y F, Liu Z, Yan K P. Catal. Today, 2013, 211(4): 39.

[30]

Song C L, Feng B, Tao Z M, Li F C, Huang Q F. J. Hazard. Mater., 2009, 166(1): 523.

[31]

Niu J H, Yang X F, Zhu A M, Shi L L, Sun Q, Xu Y, Shi C. Catal. Commun., 2006, 7(5): 297.

[32]

Porta P, Morpurgo S. Appl. Clay Sci., 1995, 10(1/2): 31.

[33]

Chmielarz L, Kuśtrowski P, Rafalska-Łasocha A, Majda D, Dziembaj R. Appl. Catal. B-Environ., 2002, 35(3): 195.

[34]

Ren H T, Jia S Y, Zou J J, Wu S H, Han X. Appl. Catal. B-Environ., 2015, 176/177(14): 53.

[35]

Li H D, Chen T H, Wang Y, Tang J G, Wang Y, Sang Y H, Liu H. Chinese J. Catal., 2017, 38(6): 1063.

[36]

Elder S H, Cot F M, Su Y, Heald S M, Tyryshkin A M, Bowman M K, Gao Y, Joly A G, Balmer M L, Kolwaite A C. J. Am. Chem. Soc., 2000, 122: 5138.

[37]

Han E, Vijayarangamuthu K, Youn J S, Park Y K, Jung S C, Jeon K J. Catal. Today, 2018, 303: 305.

[38]

Yu J G, Yu H G, Cheng B, Zhou M H, Zhao X J. J. Mol. Catal. A-Chem., 2006, 253(1): 112.

[39]

Mathew S, Prasad A K, Benoy T, Rakesh P P, Hari M, Libish T M, Radhakrishnan P, Nampoori V P N, Vallabhan C P G. J. Fluoresc., 2012, 22(6): 1563.

[40]

Zhang M, Sun R Z, Li Y J, Shi Q M, Xie L H, Chen J S, Xu X H, Shi H X, Zhao W L. J. Phys. Chem. C, 2016, 120(20): 10746.

[41]

Pan H, Guo Y H, Jian Y F, He C. Energ. Fuel, 2015, 29(8): 5282.

[42]

Yu Q Q, Liu T, Wang H, Xiao L P, Chen M, Jiang X Y, Zheng X M. Chinese J. Catal., 2012, 33(4–6): 783.

[43]

Jiang Z, Ouyang Q, Peng B, Zhang Y X, Zan L. J. Mater. Chem. A., 2014, 2(46): 19861.

[44]

Eom H, Jung J Y, Shin Y, Kim S, Choi J H, Lee E, Jeong J H, Park I. Nanoscale, 2013, 6(1): 226.

[45]

Vandenbulcke L, Persis S D, Gries T, Delfau J L. J. Taiwan Inst. Chem. E., 2012, 43(5): 724.

[46]

Majumdar A, Singh R K, Palm G J, Hippler R. J. Appl. Phys., 2009, 106(8): 084701.

[47]

Wang H, Li X X, Chen P, Chen M, Zheng X M. Chem. Commun., 2013, 49(81): 9353.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/