K3PO4-Promoted Cyclopropanation of Electron-deficient Alkenes with 2-Bromo-1,3-Propanedione Compounds

Zhanguo Chen , Ting Wen , Dan Hou

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1002 -1007.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1002 -1007. DOI: 10.1007/s40242-019-9137-y
Article

K3PO4-Promoted Cyclopropanation of Electron-deficient Alkenes with 2-Bromo-1,3-Propanedione Compounds

Author information +
History +
PDF

Abstract

An easy and efficient method for the synthesis of multisubstituted cyclopropane derivatives from electron-deficicent alkenes with 2-bromo-1,3-propanedione compounds was described. For this method, ethyl α-cyanocinnamate derivatives 1 and β,β-dicyanostyrene derivatives 4 can all smoothly reacted with 2-bromo-1,3-propanedione compounds 2 to afford the corresponding multisubstituted cyclopropane derivatives 3 and 5 in good to excellent yields(up to 100%) promoted by anhydrous K3PO4 in DMF at room temperature, respectively. A possible mechanism of this reaction was proposed. Structures of all the products were confirmed by 1H NMR, 13C NMR and HRMS.

Keywords

Cyclopropanation / Multisubstituted cyclopropane derivative / Electron-deficicent alkene / 2-Bromo-1,3-propanedione compound

Cite this article

Download citation ▾
Zhanguo Chen, Ting Wen, Dan Hou. K3PO4-Promoted Cyclopropanation of Electron-deficient Alkenes with 2-Bromo-1,3-Propanedione Compounds. Chemical Research in Chinese Universities, 2019, 35(6): 1002-1007 DOI:10.1007/s40242-019-9137-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lautens M, Klute W, Tam W. Chem. Rev., 1996, 96(1): 49.

[2]

Carson C A, Kerr M A. Chem. Soc. Rev., 2009, 38(11): 3051.

[3]

Chen D Y K, Pouwer R H, Richard J A. Chem. Soc. Rev., 2012, 41(13): 4631.

[4]

Kim H Y, Walsh P J. Acc. Chem. Res., 2012, 45(9): 1533.

[5]

Pan L, Liu X H, Shi Y X, Wang B L, Wang S H, Li B J, Li Z M. Chem. Res. Chinese Universities, 2010, 26(3): 389.

[6]

Faust R. Angew Chem. Int. Ed., 2001, 40(12): 2251.

[7]

Donaldson W A. Tetrahedron, 2001, 57(41): 8589.

[8]

Little R D, Dawson J R. J. Am. Chem. Soc., 1978, 100(14): 4607.

[9]

Little R D, Dawson J R. Tetrahedron Lett., 1980, 21(27): 2609.

[10]

Caine D. Tetrahedron, 2001, 57(14): 2643.

[11]

Warner D T. J. Org. Chem., 1959, 24: 1536.

[12]

McCoy L L. J. Org. Chem., 1964, 29(1): 240.

[13]

Wong H N C, Hon M Y, Tse C W, Yip Y C, Tanko J, Hudlicky T. Chem. Rev., 1989, 89(1): 165.

[14]

Reissig H U, Zimmer R. Chem. Rev., 2003, 103(4): 1151.

[15]

Wurz R P, Charette A B. Org. Lett., 2005, 7(12): 2313.

[16]

Carson C A, Kerr M A. Chem. Soc. Rev., 2009, 38(11): 3051.

[17]

Simone F. D., Waser J., Synthesis, 2009, (20), 3353

[18]

Lebel H, Marcoux J F, Molinaro C, Charette A B. Chem. Rev., 2003, 103(4): 977.

[19]

Rubin M, Rubina M, Gevorgyan V. Chem. Rev., 2007, 107(7): 3117.

[20]

Rubin M., Rubina M., Gevorgyan V., Synthesis, 2006, (8), 1221

[21]

Long J, Yuan Y, Shi Y. J. Am. Chem. Soc., 2003, 125(45): 13632.

[22]

Aggarwal V K, Fang G Y, Meek G. Org. Lett., 2003, 5(23): 4417.

[23]

Kim H Y, Lurain A E, Garcia-Garcia P, Carroll P J, Walsh P J. J. Am. Chem. Soc., 2005, 127(38): 13138.

[24]

Son J B, Hwang M H, Lee W, Lee D H. Org. Lett., 2007, 9(20): 3897.

[25]

Davoren J E, Martin S F. J. Am. Chem. Soc., 2007, 129(3): 510.

[26]

Qian D, Hu H, Liu F, Tang B, Ye W, Wang Y, Zhang J. Int. Ed. Angew. Chem., 2014, 53(50): 13751.

[27]

Qian D, Zhang J. Chem. Commun., 2011, 47(39): 11152.

[28]

Pohlman M, Kazmaier U. Org. Lett., 2003, 5(15): 2631.

[29]

Huang K, Huang Z Z. Synlett., 2005, 1621.

[30]

Zheng J C, Liao W W, Tang Y, Sun X L, Dai LX. J. Am. Chem. Soc., 2005, 127(35): 12222.

[31]

Aggarwal V K, Grange E. Chem. Eur. J., 2006, 12(2): 568.

[32]

Kawai D, Kawasumi K, Miyahara T, Hirashita T, Araki S. Tetra-hedron, 2009, 65(50): 10390.

[33]

Gololobov Y G, Nesmeyanov A N, Lysenko V P, Boldeskul I E. Tetrahedron, 1987, 43(12): 2609.

[34]

Padwa A, Ku H. J. Org. Chem., 1980, 45(19): 3756.

[35]

Zhang Y B, An Y, Sun J, Ding A S, Wang Y, Rios R, Guo H. Tetrahedron Lett., 2015, 56(46): 6499.

[36]

Zhang Y B, Qian R, Zheng X L, Zeng Y, Sun J, Chen Y Y, Ding A S, Guo H. Chem. Commun., 2015, 51(1): 54.

[37]

Kuang Y L, Shen B, Dai L, Yao Q, Liu X H, Lin L L, Feng X M. Chem. Sci., 2018, 9(3): 688.

[38]

Chen Z G, Xia W, Liu D, Liu Y L, Du M F, Cao C X. J. Chin. Chem. Soc., 2016, 63(2): 158.

[39]

Chen Z G, Liu Y L, Hu J L, Liu D. Chem. Res. Chinese Univer-sities, 2015, 31(1): 65.

[40]

Chen Z G, Li Y N, Zhou J M, Wang D, Ge M. Chem. Res. Chinese Universities, 2014, 30(2): 266.

[41]

Chen Z G, Wen H, Li W L, Zhou J M, Hu J L, Xia W. J. Hetero. Chem., 2014, 51(3): 794.

[42]

Chen Z G, Wei J F, Wang M Z, Zhou L Y, Zhang C J, Shi X Y. Adv. Synth. Catal., 2009, 351(14/15): 2358.

[43]

Sun Q, Shi L X, Ge Z M, Cheng T M, Li R T. Chin. J. Chem., 2005, 23(6): 745.

[44]

Tu S J, Rong L C, Gao Y, Guo S M, Lu S H, Yang X J. Chin. J. Org. Chem., 2002, 22(5): 364.

[45]

Giovannitti Alexander, Seifermann Stefan M., Bihlmeier Angela, Muller Thierry, Topic Filip, Rissanen Kari, Nieger Martin, Klopper Wim, Bräse Stefan. Single and Multiple Additions of Dibenzoylmethane onto Buckminsterfullerene. European Journal of Organic Chemistry, 2013, 2013(35): 7907-7913.

[46]

Pravst I, Zupan M, Stavber S. Green Chem., 2006, 8(11): 1001.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/