Synthesis of CuII/ZIF-8 Metal-organic Framework Catalyst and Its Application in the Aerobic Oxidation of Alcohols

Junying Hou , Jianjun Hao , Yaya Wang , Jingchun Liu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 860 -865.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 860 -865. DOI: 10.1007/s40242-019-9133-2
Article

Synthesis of CuII/ZIF-8 Metal-organic Framework Catalyst and Its Application in the Aerobic Oxidation of Alcohols

Author information +
History +
PDF

Abstract

The three-dimensional copper-doped zeolitic imidazolate framework ZIF-8(CuII/ZIF-8) was prepared by a metal ion exchange process, using reaction of three different copper salts, zinc nitrate hexahydrate[Zn(NO)3·6H2O] and 2-methylimidazole(2-MeIM) under nitrogen atmosphere at the room temperature. The TEM and PXRD results indicated that the morphology of CuII/ZIF-8 was rhombic dodecahedron and the structure was intact after copper was doped into the porous ZIF-8. The synthesized Cu(NO3)2/ZIF-8 heterogeneous catalyst showed an excellent activity for the aerobic oxidation of primary alcohols employing molecular oxygen as oxidant. Moreover, the Cu(NO3)2/ZIF-8 heterogeneous catalyst can cycled 15 times without leaching of copper.

Keywords

Metal organic framework / Heterogeneous catalyst / Molecular oxygen

Cite this article

Download citation ▾
Junying Hou, Jianjun Hao, Yaya Wang, Jingchun Liu. Synthesis of CuII/ZIF-8 Metal-organic Framework Catalyst and Its Application in the Aerobic Oxidation of Alcohols. Chemical Research in Chinese Universities, 2019, 35(5): 860-865 DOI:10.1007/s40242-019-9133-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen B, Wang L Y, Gao S. ACS Catal., 2015, 5(10): 675.

[2]

Varma R S, Saini R K. Tetrahedron Lett., 1998, 39(12): 1481.

[3]

Kamimura A, Nozaki Y, Ishikawa S, Inoue R, Nakayama M. Te-trahedron Lett., 2011, 52(4): 538.

[4]

Jiang H M, Sun T Y, Wang X, Xie Y M, Zhang X H, Wu Y D, Schaefer H F. Org. Lett., 2017, 19(24): 6502.

[5]

Gogoi N, Begum T, Dutta S, Bora U, Gogoi P K. RSC Adv., 2015, 5: 95344.

[6]

Hou J Y, Luan Y, Tang J, Wensley A M, Yang M, Lu Y F. J. Mol. Catal. A: Chem., 2015, 407: 53.

[7]

Zhang G S, Xing X F, Guan Y, Zhou A Q, Zhang X M, Xu X H, Repo T. Chem. J. Chinese Universities, 2013, 34(4): 900.

[8]

Zavahir S, Xiao Q, Sarina S, Zhao J, Bottle S, Wellard M, Jia J F, Jing L Q, Huang Y M, Blinco J P, Wu H S, Zhu H Y. ACS Catal., 2016, 6(6): 3580.

[9]

Dutta D, Phukan A, Dutta D K. Mol. Catal., 2018, 451: 178.

[10]

Iron M A, Szpilman A M. Chem. Eur. J., 2017, 23: 1368.

[11]

Semmelhack M F, Schmid C R, Cortes D A, Chou C S. J. Am. Chem. Soc., 1984, 106: 3374.

[12]

Xie X M, Stahl S S. J. Am. Chem. Soc., 2015, 137: 3767.

[13]

Chandra P, Jonas A M, Fernandes A E. ACS Catal., 2018, 8(7): 6006.

[14]

Vanoye L, Pablos M, de Bellefon C, Favre-Reguillon A. Adv. Synth. Catal., 2015, 357: 739.

[15]

Solomon E I, Stahl S S. Chem. Rev., 2018, 118: 2299.

[16]

Grayson J D, Partridge B M. ACS Catal., 2019, 9(5): 4296.

[17]

Corma A. Angew. Chem. Int. Ed., 2016, 55: 6112.

[18]

Parmeggiani C, Matassini C, Cardona F. Green Chem., 2017, 19: 2030.

[19]

Li F H, Hu D R, Yuan Y H, Luo B B, Song Y B, Xiao S T, Chen G H, Fang Y W, Lu F S. Mol. Catal., 2018, 452: 75.

[20]

Dhakshinamoorthy A, Asiri A M, Garcia H. Chem. Commun., 2017, 53: 10851.

[21]

Kirchon A, Feng L, Drake H F, Joseph E A, Zhou H C. Chem. Soc. Rev., 2018, 47: 8611.

[22]

Kalmutzki M J, Hanikel N, Yaghi O M. Sci. Adv., 2018, 4: 9180.

[23]

Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Ya-zaydin A O, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.

[24]

Zhao J, Wang W Y, Tang H L, Ramella D, Luan Y. Mol. Catal., 2018, 456: 57.

[25]

Xue D X, Belmabkhout Y, Shekhah O, Jiang H, Adil K, Cairna A J, Eddaoudi M. J. Am. Chem. Soc., 2015, 137: 5034.

[26]

Li Y A, Zhao C W, Zhu N X, Liu Q K, Chen G J, Liu J B, Zhao X D, Ma J P, Zhang S J, Dong Y B. Chem. Commun., 2015, 51: 17672.

[27]

Dhakshinamoorthy A, Asiri A M, Garcia H. Chem. Eur. J., 2016, 22: 8012.

[28]

Chen S C, Li N, Tian F, Chai N N, He M Y, Chen Q. Mol. Catal., 2018, 450: 104.

[29]

Kumar P, Pournara A, Kim K H, Bansal V, Rapti S, Manos M J. Prog. Mater. Sci., 2017, 86: 25.

[30]

Noori Y, Akhbari K. RSC Adv., 2017, 7: 1782.

[31]

Marshall R J, Forgan R S. Eur. J. Inorg. Chem., 2016, 27: 4310.

[32]

Fu Y H, Xu L, Shen H M, Yang H, Zhang F M, Zhu W D, Fan M H. Chem. Eng. J., 2016, 299: 135.

[33]

Sun D R, Sun F X, Deng X Y, Li Z H. Inorg. Chem., 2015, 54: 8639.

[34]

Stubbs A W, Braglia L, Borfecchia E, Meyer R J, Ro-man-Leshkov Y, Lamberti C, Dinca M. ACS Catal., 2018, 8(1): 596.

[35]

Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. CrystEngComm., 2013, 15: 1794.

[36]

Bai L, Li M, Guan J Q. Chemistry Select., 2018, 3: 581.

[37]

Zhang X W, Huang N, Wang G, Dong W J, Yang M, Luan Y, Shi Z. Micropor. Mesopor. Mat., 2013, 177: 47.

[38]

Schejn A, Aboulate A, Balan L, Falk V, Lavevee J, Medjahdi G, Aranda L, Mozet K, Schneider R. Catal. Sci. Technol., 2015, 5: 1829.

[39]

Du P C, Dong Y N, Liu C, Wei W L, Liu D, Liu P. J. Colloid Interf. Sci., 2018, 518: 57.

[40]

Ethiraj J, Bonino F, Lamberti C, Bordiga S. Micropor. Mesopor. Mat., 2015, 207: 90.

[41]

Li Y, Wee L H, Martens J A, Vankelecom I F J. J. Memb. Sci., 2017, 523: 561.

[42]

Wu C S, Xiong Z H, Li C. RSC Adv., 2015, 5: 82127.

[43]

James J B, Lin Y S. J. Phys. Chem. C, 2016, 120: 14015.

[44]

Hou J Y, Luan Y, Yu J, Qi Y, Wang G, Lu Y F. New J. Chem., 2016, 40: 10127.

[45]

Wang J J, Liu C S, Chang Z, Yan L F, Bu X H. Chinese J. Inorg. Chem., 2006, 22: 8.

[46]

Gamez P, Arends I W C E, Reedijk J, Sheldon R A. Chem. Commun., 2003, 2142.

[47]

Luan Y, Qi Y, Gao H Y, Zheng N N, Wang G. J. Mater. Chem. A, 2014, 2: 20588.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/