In situ Deposition of ‘Naked’ Gold Nanoparticles Supported on Silica Spheres as Recyclable Catalysts in Styrene Epoxidation

Qihui Shen , Xinyu Zhou , Yang Lyu , Miao Li , Yan Liu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 854 -859.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 854 -859. DOI: 10.1007/s40242-019-9127-0
Article

In situ Deposition of ‘Naked’ Gold Nanoparticles Supported on Silica Spheres as Recyclable Catalysts in Styrene Epoxidation

Author information +
History +
PDF

Abstract

The rational designs of particle size, morphology and surface states of the Au nanoparticles(AuNPs) are crucial for Au nanocatalyst. We herein report a method to synthesize the silica microspheres supported AuNPs(ca. 1 nm) and their application in controlling the reaction conversion and selectivity in styrene epoxidation. Surfactant-free AuNPs deposited on silica microspheres were in situ fabricated with aid of the Ag nanoparticles (AgNPs) as sacrificial template by galvanic replacement reaction, leading to AuNPs/SiO2 catalyst directly without any post-treatment to expose crystal facets. A high conversion of 46.7% and selectivity of 91.7% to styrene oxide was achieved with H2O2 as oxidant in ethanol. The solid catalyst could be reused at least 10 reaction cycles without significant decrease in activity and selectivity. This study not only supplies an active, recoverable catalyst for styrene oxidation with green oxidant and solvent, but also demonstrates that the silica microspheres functionalized with thiol groups have a superior ability in stabilizing noble metal nanoparticles even without any surfactant.

Keywords

Au nanoparticles / STyrene epoxidation / Galvanic replacement

Cite this article

Download citation ▾
Qihui Shen, Xinyu Zhou, Yang Lyu, Miao Li, Yan Liu. In situ Deposition of ‘Naked’ Gold Nanoparticles Supported on Silica Spheres as Recyclable Catalysts in Styrene Epoxidation. Chemical Research in Chinese Universities, 2019, 35(5): 854-859 DOI:10.1007/s40242-019-9127-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y, Wan X, Ren L, Su H, Li G, Malola S, Lin S, Tang Z, Hakkinen H, Teo B, Wang Q, Zheng N. J. Am. Chem. Soc., 2016, 138: 3278.

[2]

Gu Y, Li C, Bai J, Zhang Y, Wang J. J. Clust. Sci., 2016, 27: 1147.

[3]

Fang J, Li J, Zhang B, Yuan X, Asakura H, Tanaka T, Teramura K, Xie J, Yan N. Nanoscale, 2015, 7: 6325.

[4]

Liu X, He L, Liu Y, Cao Y. Acc. Chem. Res., 2014, 47: 793.

[5]

Zhang J, Chen G, Guay D, Chaker M, Ma D. Nanoscale, 2014, 6: 2125.

[6]

Li G, Jin R. Acc. Chem. Res., 2013, 46: 1749.

[7]

Chiu C, Li Y, Ruan L, Ye X, Murray C, Huang Y. Nat. Chem., 2011, 3: 393.

[8]

Azubel M, Kornberg R D. Nano Lett., 2016, 16: 3348.

[9]

Liu B, Wang P, Lopes A, Jin L, Zhong W, Pei Y, Sui S, He J. ACS Catal., 2017, 7: 3483.

[10]

Liu J, Wang F, Xu T, Gu Z. Catal. Lett., 2010, 134: 51.

[11]

Linares N, Canlas C P, Garcia-Martinez J, Pinnavaia T J. Catal. Commun., 2014, 44: 50.

[12]

Saikia M, Kaichev V, Saikia L. RSC Adv., 2016, 6: 106856.

[13]

Sheu J, Chen C, Huang P, Hsu M. Microelectron. Eng., 2005, 78/79: 294.

[14]

Qin F, Yu C, Li J, Wei C, Gu J, Shi J. Dalton Trans., 2010, 39: 3233.

[15]

Srivastava D, Hendricks T, Lee I. Nanotechnology, 2007, 18: 245305.

[16]

Zheng J, Dong Y, Wang W, Ma Y, Hu J, Chen X, Chen X. Nano-scale, 2013, 5: 4894.

[17]

Sakai T, Enomoto H, Sakai H, Abe M. Ultrason. Sonochem., 2014, 21: 946.

[18]

Fleming D A, Williams M E. Langmuir, 2004, 20: 3021.

[19]

Liu Y, Li Y, Kang Y, Shen Q, Liu X, Zhou J. Chem. Eur. J., 2017, 23: 6244.

[20]

Lu Y, Chen W. Chem. Soc. Rev., 2012, 41: 3594.

[21]

Fu Y, Huang T, Zhang L, Zhu J, Wang X. Nanoscale, 2015, 7: 13723.

[22]

Song J, Kang H, Lee C, Hwang S H, Jang J. ACS Appl. Mater. Interfaces, 2012, 4: 460.

[23]

Pitteri B, Bortoluzzi M, Bertolasi V. Transit. Metal Chem., 2008, 33: 649.

[24]

Yao W, Li F, Li H, Lang J. J. Mater. Chem. A, 2015, 3: 4578.

[25]

Lee D, Jang H, Hong S, Park S. J. Colloid Interf. Sci., 2012, 388: 74.

[26]

Lee D, Kim S, Jeong H, Kim J, Lee I. ACS Nano, 2014, 8: 4510.

[27]

Lu X, McKiernan M, Peng Z, Lee E, Yang H, Xia Y. Sci. Adv. Mater., 2015, 2: 413.

[28]

Jin C, Qu Y, Wang M, Han J, Hu Y, Guo R. Langmuir, 2016, 32: 4595.

[29]

Mashayekhi N A, Wu Y Y, Kung M C, Kung H H. Chem. Com-mun., 2012, 48: 10096.

[30]

Tseng Y, Cherng R, Yuan Z, Wu C, Chang H, Huang C. Nano-scale, 2016, 8: 5162.

[31]

Choudhary V, Jha R, Chaudhari N, Jana P. Cat. Commun., 2007, 8: 1556.

[32]

Vernimmen J, Guidotti M, Silvestre-Albero J, Jardim E, Mertens M, Lebedev O, Van Tendeloo G, Psaro R, Rodríguez-Reinoso F, Meynen V, Cool P. Langmuir, 2011, 27: 3618.

[33]

Liu Y, Tsunoyama H, Akita T, Tsukuda T. Chem. Commun., 2010, 46: 550.

[34]

Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D. J. Am. Chem. Soc., 2010, 132: 8466.

[35]

Hu R, Yang P, Pan Y, Li Y, He Y, Feng J, Li D. Dalton Trans., 2017, 46: 13463.

[36]

Zhang P, Yang M, Lu X. Asian J. Chem., 2007, 19: 2083.

[37]

Zheng Y, Zhang X, Yao Y, Chen X, Yang Q. RSC Adv., 2015, 5: 105747.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/