Synthesis of Pt-SnO x/TS-1@SBA-16 Composites and Their High Catalytic Performance for Propane Dehydrogenation

Hongda Li , Zhen Zhao , Jiacheng Li , Jianmei Li , Linlin Zhao , Jiachen Sun , Xiaoqiang Fan

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 866 -873.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 866 -873. DOI: 10.1007/s40242-019-9120-7
Article

Synthesis of Pt-SnO x/TS-1@SBA-16 Composites and Their High Catalytic Performance for Propane Dehydrogenation

Author information +
History +
PDF

Abstract

novel composite material of TS-1@SBA-16 was synthesized by enwrapping TS-1 zeolite crystals with mesoporous SBA-16 silica. This composite was used as catalyst support for loading Pt-SnO x in the propane dehydro-genation(PDH) reaction. Catalysts were characterized by means of N2 adsorption-desorption, XRD, SEM, TEM XPS, UV-Vis, and Raman spectroscopy. The effect of different contents of TS-1 on PDH was investigated, and the optimal amount of TS-1 was determined to be 10%. The catalyst with TS-1 content of 10% showed the highest PDH activity and the initial conversion of propane over it can achieve 54.5%, higher than those over TS-1 or SBA-16-supported ones. The superior catalytic performance of Pt-SnO x/TS-1@SBA-16 is related to the synergistic effect of the excellent mass transfer performance through the hierarchical porous structure, suitable acid acidity and electronic effect of Ti species.

Keywords

Catalyst / Pt-SnO x / Propane / Dehydrogenation / TS-1 zeolite / Micro- and meso-porous material

Cite this article

Download citation ▾
Hongda Li, Zhen Zhao, Jiacheng Li, Jianmei Li, Linlin Zhao, Jiachen Sun, Xiaoqiang Fan. Synthesis of Pt-SnO x/TS-1@SBA-16 Composites and Their High Catalytic Performance for Propane Dehydrogenation. Chemical Research in Chinese Universities, 2019, 35(5): 866-873 DOI:10.1007/s40242-019-9120-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azzam K G, Jacobs G, Shafer W D, Davis B H. Appl. Catal. A, 2010, 390: 264.

[2]

Baek J, Yun H J, Yun D, Choi Y, Yi Y. ACS Catal., 2012, 2: 1893.

[3]

Ren Y, Zhang F, Hua W M, Yue Y H, Gao Z. Catal. Today, 2009, 148: 316.

[4]

Wang G W, Zhang H L, Wang H R, Zhu Q Q, Li C Y, Shan H H. J. Catal., 2016, 344: 606.

[5]

Sattler J J H B, Gonzalez-Jimenez I D, Luo L, Steers B A, Malik A, Barton D G, Kilos B A, Kaminsky M P, Verhoeven T, Koers E J, Baldus M, Weckhuysen B M. Angew. Chem. Int. Ed., 2014, 53: 9251.

[6]

Zhang Y W, Zhou Y M, Qiu A D, Wang Y, Xu Y, Wu P C. Catal. Commun., 2006, 7: 860.

[7]

Sattler J J, Ruizmartinez J, Santillanjimenez E, Weckhuysen B M. Chem. Rev., 2014, 114: 10613.

[8]

Yang W S, Wu R A, Lin L W. Petro. Technol., 1993, 23: 347.

[9]

Long L L, Lang W Z, Yan X, Xia K, Guo Y J. Fuel Process. Technol., 2016, 146: 48.

[10]

Jiang F, Zeng L, Li S R, Liu G, Wang S P, Gong J L. ACS Catal., 2015, 5: 438.

[11]

Tanabe K, Hölderich W F. Appl. Catal. A, 1999, 181: 399.

[12]

Zhang Y W, Zhou Y M, Li H, Zhou S J, Sheng X L, Wang Q L, Zhang C. Chem. Eng. J., 2015, 270: 352.

[13]

Zhang Y W, Xue M W, Zhou Y M, Zhang H X, Wang W, Wang Q L, Sheng X L. RSC Advances, 2016, 6: 29410.

[14]

Nazwz Z, Tang X P, Zhang Q, Wang D Z, Fei W. Catal. Commun., 2009, 10: 1925.

[15]

Nazwz Z, Tang X P, Wang Y, Fei W. Ind. Eng. Chem. Res., 2010, 49: 1274.

[16]

Nazwz Z, Baksh F, Zhu J, Fei W. J. Ind. Eng. Chem., 2013, 19: 540.

[17]

Nazwz Z, Fei W. J. Ind. Eng. Chem., 2010, 16: 774.

[18]

Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333: 328.

[19]

Ramírez P, Christensen J, C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37: 2530.

[20]

Sun Y Y, Prins R. Angew. Chem. Int. Ed., 2010, 47: 8478.

[21]

Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. J. Am. Chem. Soc., 2000, 122: 7116.

[22]

Reddy J K, Motokura K, Koyama T, Miyaji A, Baba T. J. Catal., 2012, 289: 53.

[23]

Shan Z C, Wang H, Meng X J, Liu S Y, Wang L, Wang C Y, Li F, Lewis J P, Xiao F S. Chem. Commun., 2011, 47: 1048.

[24]

Zhang Y W, Zhou Y M, Shi J J, Zhou S J, Sheng X L, Zhang Z W, Xiang S M. J. Mol. Catal. A: Chem., 2014, 381: 138.

[25]

Fan X Q, Li J M, Zhao Z, Wei Y C, Liu J, Duan A J, Jiang G Y. Catal. Sci. Technol., 2015, 5: 339.

[26]

Li J C, Li J M, Zhao Z, Fan X Q, Liu J, Wei Y C, Duan A J, Xie Z A, Liu Q L. J. Catal., 2017, 352: 361.

[27]

Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Chem. Soc. Rev., 2016, 45: 3353.

[28]

Yang Y, Li L H, Li Y, Rooke J, Sanchez C, Su B L. Chem. Soc. Rev., 2017, 46: 481.

[29]

Wu H D, Duan A J, Zhao Z, Li T S, Prins R, Zhou X F. J. Catal., 2014, 317: 303.

[30]

Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. J. Am. Chem. Soc., 1998, 136: 6024.

[31]

Kong L, Li J M, Liu Q L, Zhao Z, Sun Q Y, Liu J, Wei Y C. Appl. Catal. A, 2016, 510: 84.

[32]

Kim T W, Ryoo R, Kruk M, Giersal K P, Jaroniec M, Kamiya S, Terasaki O. J. Phys. Chem. B, 2004, 108: 11480.

[33]

Lee W S, Zhang R, Akatay M C, Baertsch C D, Stach E A, Ribeiro F H, Delgass W N. ACS Catal., 2011, 1: 1327.

[34]

Dong Y L, Zhan X L, Niu X Y, Li J, Yuan F L, Zhu Y J, Fu H G. Microporous Mesoporous Mater., 2014, 185: 97.

[35]

Wang X, Zhang X, Wang Y, Liu H, Qiu J, Wang J, Han W, Yeung K L. ACS Catal., 2011, 1: 437.

[36]

Marchese L, Maschmeyer T, Gianotti E, Coluccia S, Thomas J M. J. Phys. Chem. B, 1997, 101: 8836.

[37]

Lee E L, Wachs I E. J. Phys. Chem. C, 2015, 111: 14410.

[38]

Li C, Xiong G, Xin Q, Liu J K, Ying P L, Feng Z C, Li J, Yang W B, Wang Y Z, Wang G R, Liu X Y, Lin M, Wang X Q, Min E Z. Angew. Chem. Int. Ed., 1999, 38: 2220.

[39]

Ma Z C, Yang H Q, Qin Y, Hao Y J, Li G. J. Mol. Catal. A: Chem., 2010, 331: 78.

[40]

Hsu C Y, Chiang A S T, Selvin R, Thompson R W. J. Phys. Chem. B, 2005, 109: 18804.

[41]

Bezouhanova C P, Zarev L, Lechert H. Catal. Lett., 1994, 25: 169.

[42]

Yu C L, Xu H Y, Ge Q J, Li W Z. J. Mol. Catal. A: Chem., 2007, 266: 80.

[43]

Arandiyan H, Dai H X, Ji K M, Sun H Y, Li J H. ACS Catal., 2005, 5: 1781.

[44]

Österlund L, Kielbassa S, Werdinius C, Kasemo B. J. Catal., 2003, 215: 94.

[45]

Nawaz Z, Wei F. Ind. Eng. Chem. Res., 2009, 48: 7442.

[46]

Chakrabarti A, Forda M E, Gregorya D, Hua R R, Keturakis C J, Lwina S, Tang Y D, Zhou Y G, Zhua M H, Banares M A, Wachs I E. Catal. Today, 2016, 283: 27.

[47]

Hayhurst D T, Paravar A R. Zeolites, 1998, 8: 27.

[48]

Wu Z, Stair P. J. Catal., 2006, 273: 220.

[49]

Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S J. Appl. Phys., 1996, 80: 440.

[50]

Juez A I, Beale A M, Maaijen K, Weng T C, Glatzel P, Weckhuysen B M. J. Catal., 2010, 276: 268.

[51]

Wang Y, Alsmeyer D, McCreery R. Chem. Mater., 1990, 2: 557.

[52]

Sattler J J H B, Beale A M, Weckhuysen B M. Phys. Chem. Chem. Phys., 2013, 15: 12095.

[53]

Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Phys. Chem. Chem. Phys., 2007, 9: 1276.

[54]

Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Carbon, 2005, 43: 1731.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/