Excited State Properties of Fucoxanthin Aggregates

Jialing Zuo , Liming Tan , Yi Xu , Yingchao Ma , Jia Dong , Peng Wang , Jianping Zhang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 627 -635.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 627 -635. DOI: 10.1007/s40242-019-9097-2
Article

Excited State Properties of Fucoxanthin Aggregates

Author information +
History +
PDF

Abstract

The structure and excited state properties of the H- and J-aggregates of the marine carbonyl carotenoid, fucoxanthin(Fx), were studied by various spectroscopic methods, and compared with those of Fx monomers in polar organic solvents. The fluorescent analysis indicated that the higher vibronic states of S2 contribute more to populating the S1 state, from which fluorescent emission mainly originates. Resonance Raman and density functional theory calculations confirmed the ‘card-packed’ and ‘head-to-tail’ structures of the H- and J-aggregates of Fx, respectively. An fs time-resolved absorption study proved the coexistence of S1 and intramolecular charge transfer relaxation pathways upon excitation to the S2 state for both the monomers and aggregates.

Keywords

Fucoxanthin aggregate / Resonance Raman / fs Time-resolved absorption / Excited state property / Singlet fission

Cite this article

Download citation ▾
Jialing Zuo, Liming Tan, Yi Xu, Yingchao Ma, Jia Dong, Peng Wang, Jianping Zhang. Excited State Properties of Fucoxanthin Aggregates. Chemical Research in Chinese Universities, 2019, 35(4): 627-635 DOI:10.1007/s40242-019-9097-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Köhn S, Kolbe H, Korger M, Köpsel C, Mayer B, Auweter H, Lüddecke E, Bettermann H, Martin H D. Aggregation and Interface Behaviour of Carotenoids, Chapter 5, Carotenoids, 2008, 4: 53.

[2]

Gruszecki W I, Zelent B, Leblanc R M. Chem. Phys. Lett., 1990, 171(5): 563.

[3]

Köpsel C, Möltgen H, Schuch H, Auweter H, Kleinermanns K, Martin H D, Bettermann H. J. Mol. Struct., 2005, 750: 109.

[4]

Spano F C. J. Am. Chem. Soc., 2009, 131: 4267.

[5]

Wang C, Berg C J, Hsu C C, Merrill B A, Tauber M J. J. Phys. Chem. B, 2012, 116: 10617.

[6]

Adamkiewicz P, Sujak A, Gruszecki W I. J. Mol. Struct., 2013, 1046: 44.

[7]

Hempel J, Schädle C N, Leptihn S, Carle R, Schweiggert R M. J. Photochem. Photobiol. A, 2016, 317: 161.

[8]

Zajac G, Kaczor A, Pallares Z A, Mlynarski J, Dudek M, Baranska M. J. Phys. Chem. B, 2016, 120: 4028.

[9]

Saito S, Tasumit M, Eugster C H. J. Raman Spectrosc., 1983, 14(5): 299.

[10]

Hashimoto H, KIiyohara D, Kamo Y, Komuta H, Mori Y. Jpn. J. Appl. Phys., 1996, 35: 281.

[11]

Mori Y. J. Raman Spectrosc., 2001, 32: 543.

[12]

Gaier K, Angerhofer A, Wolf H C. Chem. Phys. Lett., 1991, 187(1): 103.

[13]

Okamoto H, Hamaguchi H O, Tasumi M. J. Ramam Spectrosc., 1989, 20: 751.

[14]

Zsila F, Bikádi Z, Keresztes Z, Deli J, Simonyi M. J. Phys. Chem. B, 2001, 105(39): 9413.

[15]

Spano F C. Acc. Chem. Res., 2010, 43(3): 429.

[16]

Mori Y, Yamano K, Hashimoto H. Chem. Phys. Lett., 1996, 254: 84.

[17]

Dong J, Zhang D, Wang X Y, Wang P. Chem. Phys. Lett., 2018, 701: 52.

[18]

Smith M B, Michl J. Chem. Rev., 2010, 110: 6891.

[19]

Wang X F, Wang L, Wang Z, Wang Y, Tamai N, Hong Z, Kido J. J. Phys. Chem. C, 2013, 117: 804.

[20]

Billsten H H, Sundström V, Polívka T. J. Phys. Chem. A, 2005, 109: 1521.

[21]

Wang C, Tauber M J. J. Am. Chem. Soc., 2010, 132: 13988.

[22]

Wang C, Angelella M, Kuo C H, Tauber M J. Proc. SPIE, 2012, 8459: 1.

[23]

Fuciman M, Durchan M, Šlouf V, Keşan G, Polívka T. Chem. Phys. Lett., 2013, 568/569: 21.

[24]

Musser A J, Maiuri M, Brida D, Cerullo G, Friend R H, Clark J. J. Am. Chem. Soc., 2015, 137: 5130.

[25]

Zhang D, Tan L, Dong J, Yi J, Wang P, Zhang J. Chem. Res. Chinese Universities, 2018, 34(4): 634.

[26]

Yu J, Fu L M, Yu L J, Shi Y, Wang P, Wang-Otomo Z Y, Zhang J P. J. Am. Chem. Soc., 2017, 139: 15984.

[27]

Hashimoto H, Sugai Y, Uragami C, Gardiner A T, Cogdell R J. J. Photochem. Photobiol. C, 2015, 25: 46.

[28]

Polívka T, Frank H A. Acc. Chem. Res., 2010, 43(8): 1125.

[29]

Yamano Y, Mimuro M, Ito M. J. Chem. Soc., Perkin Trans., 1997, 1: 2713.

[30]

Katoh T, Nagashima U, Mimuro M. Photosynth. Res., 1991, 27: 221.

[31]

Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank H A, Hashimoto H. Chem. Phys. Lett., 2009, 483: 95.

[32]

Kosumi D, Fujii R, Sugisaki M, Oka N, Iha M, Hashimoto H. Photosynth. Res., 2014, 121: 61.

[33]

Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank H A, Hashimoto H. J. Lumin., 2011, 131: 515.

[34]

Redeckas K, Voiciuk V, Vengris M. Photosynth. Res., 2016, 128: 169.

[35]

Zigmantas D, Polívka T, Hiller R G, Yartsev A, Sundström V. J. Phys. Chem. A, 2001, 105: 10296.

[36]

Zigmantas D, Hiller R G, Yartsev A, Sundström V, Polívka T. J. Phys. Chem. B, 2003, 107: 5339.

[37]

Zigmantas D, Hiller R G, Sharples F P, Frank H A, Sundström V, Polívka T. Phys. Chem. Chem. Phys., 2004, 6: 3009.

[38]

Chatterjee N, Niedzwiedzki D M, Kajikawa T, Hasegawa S, Katsumura S, Frank H A. Chem. Phys. Lett., 2008, 463: 219.

[39]

Frank H A, Bautista J A, Josue J, Pendon Z, Hiller R G, Sharples F P, Gosztola D, Wasielewski M R. J. Phys. Chem. B, 2000, 104: 4569.

[40]

Bautista J A, Connors R E, Raju B B, Hiller R G, Sharples F P, Gosztola D, Wasielewski M R, Frank H A. J. Phys. Chem. B, 1999, 103: 8751.

[41]

Papagiannakis E, Vengris M, Larsen D S, van Stokkum I H M, Hiller R G, van Grondelle R. J. Phys. Chem. B, 2006, 110: 512.

[42]

Papagiannakis E, Larsen D S, van S I H M, Vengris M, Hiller R G, van Grondelle R. Biochemistry, 2004, 43(49): 15303.

[43]

Niedzwiedzki D M, Chatterjee N, Enriquez M M, Kajikawa T, Hasegawa S, Katsumura S, Frank H A. J. Phys. Chem. B, 2009, 113: 13604.

[44]

Stalke S, Wild D A, Lenzer T, Kopczynski M, Lohse P W, Oum K. Phys. Chem. Chem. Phys., 2008, 10(16): 2180.

[45]

Wild D A, Winkler K, Stalke S, Oum K, Lenzer T. Phys. Chem. Chem. Phys., 2006, 8: 2499.

[46]

Linden P A, Zimmermann J, Brixner T, Holt N E, Vaswani H M, Hiller R G, Fleming G R. J. Phys. Chem. B, 2004, 108: 10340.

[47]

Kita S, Fujii R, Cogdell R J, Hashimoto H. J. Photochem. Photobiol. A, 2015, 313: 3.

[48]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, M K M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09 Revision C.01, 2009.

[49]

Wang C, Angelella M, Doyle S J, Lytwak L A, Rossky P J, Holliday B J, Tauber M J. J. Phys. Chem. Lett., 2015, 6: 3521.

[50]

Frank H A, Bautista J A, Josue J, Pendon Z, Hiller R G, Sharples F P, Gosztola D, Wasielewski M R. J. Phys. Chem. B, 2000, 104: 4569.

[51]

Shima S, Ilagan R P, Gillespie N, Sommer B J, Hiller R G, Sharples F P, Frank H A, Birge R R. J. Phys. Chem. A, 2003, 107: 8052.

[52]

Hestand N J, Spano F C. Chem. Rev., 2018, 118: 7069.

[53]

Polívka T, Sundström V. Chem. Rev., 2004, 104: 2021.

[54]

Hudson B S, Kohler B E, Schulten K. Excited States, 1982, 6: 1.

[55]

Polívka T, Kerfeld C A, Pascher T, Sundström V. Biochemistry, 2005, 44: 3994.

[56]

Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank H A, Hashimoto H. Phys. Chem. Chem. Phys., 2011, 13: 10762.

[57]

Premvardhan L, Bordes L, Beer A, Büchel C, Robert B. J. Phys. Chem. B, 2009, 113: 12565.

[58]

Frank H. A., Young A. J., Britton G., Cogdell R. J.; Ed.: Govindjee R. J., Advances in Photosynthesis, Kluwer Academic Publishers, Dordrecht, 1999

[59]

Nagae H, Kuki M, Zhang J P, Sashima T, Mukai Y, Koyama Y. J. Phys. Chem. A, 2000, 104: 4155.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/