Reduction of 4-Nitrophenol Using Ficin Capped Gold Nanoclusters as Catalyst

Han Wu , Huiwu Cai , Juan Qiao , Li Qi

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 636 -640.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 636 -640. DOI: 10.1007/s40242-019-9070-0
Article

Reduction of 4-Nitrophenol Using Ficin Capped Gold Nanoclusters as Catalyst

Author information +
History +
PDF

Abstract

Conversion of nitroarenes to aminoarenes has attracted great attention in pharmaceutical industry, agricultural production, environmental protection and chemical catalysis area. In this work, ficin capped gold nanoclusters(ficin@AuNCs) were prepared for the reduction of 4-nitrophenol to 4-aminophenol. The proposed catalyst was characterized by transmission electron microscopy, dynamic light scattering, fluorescence spectra and UV-Vis spectra. With NaBH4 as the reducing agent, the reduction reaction could carry out completely within 10 min at 25 °C. Interestingly, the resultant catalyst exhibited size-related properties in the reduction, smaller ficin@AuNCs exhibited higher catalytic activity. Its present pseudo-first-order rate constant was found to be 2.95×10−3 s−1 and the catalytic activation energy was 27.7 kJ/mol. Moreover, ficin@AuNCs-based catalyst displayed good stability, heading to 4-nitrophenol conversion of 98.5%―100.0% after six consecutive cycles. It has shown a great potential in construction of unique catalysts based on AuNCs for reduction reaction.

Keywords

Ficin capped gold nanocluster / 4-Nitrophenol / 4-Aminophenol / Catalytic activation

Cite this article

Download citation ▾
Han Wu, Huiwu Cai, Juan Qiao, Li Qi. Reduction of 4-Nitrophenol Using Ficin Capped Gold Nanoclusters as Catalyst. Chemical Research in Chinese Universities, 2019, 35(4): 636-640 DOI:10.1007/s40242-019-9070-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nandanwar S U, Chakraborty U. Chin. J. Catal, 2012, 33: 1532.

[2]

Ansar S M, Kitchens C L. ACS Catal., 2016, 6: 5553.

[3]

Nay M W, Randall C W, King P H. J. Water Poll. Contr. Federation, 1974, 46: 485.

[4]

Pandy S, Mishra S B. Carbohydr. Polm, 2014, 113: 525.

[5]

Liu S, Zhou X L, Zhang M M, Lu X, Qin Y, Zhang l R, Guo Z X. Chin. Chem. Lett, 2016, 27: 843.

[6]

Lin T R, Wang l, Guo L Q, Fu F F. J. Phys. Chem. C, 2015, 119: 13658.

[7]

Gao R l, Pan L, Li Z W, Zhang X W, Wang L, Zou J J. Chin. J. Catal, 2018, 39: 664.

[8]

Rupinder K, Bonamali p. V. Appl. Catal. A: Gen, 2015, 491: 28.

[9]

Begum R, Rehan R, Farooqi Z, Butt H Z, Ashraf S. J. Nanopart. Res, 2016, 18: 231.

[10]

Fenger R, Fertitta E, Kirmse H, Thunemann A F, Rademann K. Phys. Chem. Chem. Phys, 2012, 14: 9343.

[11]

Liu K W, Han L, Zhuang J Y, Yang D R. Mat. Sci. Eng. C: Mater, 2017, 78: 419.

[12]

Goto S, Amano Y, Akiyama M, Bottcher C, Komatsu T. Langmuir, 2013, 29: 14293.

[13]

Yamamoto H, Yano H, Kouchi H, Obora Y, Arakawa R, Kawasaki H. Nanoscale, 2012, 4: 4148.

[14]

Devaraj K B, Kumar R R, Prakash V. J. Agric. Food Chem, 2008, 56: 11417.

[15]

Li J, Liu C Y, Liu Y. J. Mater. Chem, 2012, 22: 8426.

[16]

Das S K, Dickinson C, Lafir F, Brougham D F, Marsili E. Green Chem, 2012, 14: 1322.

[17]

Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M. J. Phys. Chem. C, 2010, 8814.

[18]

Pandey S, Mishra S B. Carbohydr. Polym, 2014, 113: 525.

[19]

Zhao R X, Feng X W, Huang D S, Yang G Y, Astruc D. Coodin. Chem. Rew, 2015, 287: 114.

[20]

Demirci S, Sahiner N. Water Air Soil Pollut, 2015, 226: 1.

[21]

Gupta V K, Atar N, Yola M L, Ustundag Z, Uzun L. Water Res, 2014, 48: 210.

[22]

Saha S, Pal A, Kundu S, Sasu S, Pal T. Langmuir, 2010, 26: 2885.

[23]

Syomin D, Wang J, Koel B. Appl. Surf. Sci, 2001, 45: L827.

[24]

Yang Q H, Jiang H L. Small Methods, 2018, 2: 1800216.

[25]

Pachfule P, Kandambeth S, Diaz D D, Banerjee R. Chem. Commun, 2014, 50: 3169.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/