Improving Elasticity of Conductive Silicone Rubber by Hollow Carbon Black

Jihua Zhang , Fengbo Chen , Yunfeng Zhao , Mingjie Liu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1124 -1132.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (6) : 1124 -1132. DOI: 10.1007/s40242-019-9057-x
Article

Improving Elasticity of Conductive Silicone Rubber by Hollow Carbon Black

Author information +
History +
PDF

Abstract

Carbon black-based conductive rubber composites have important impacts on electromagnetic interference(EMI) shielding applications. However, an excessive amount of carbon black in the recipes of these conductive rubbers has caused their weak elasticity. Herein, hollow carbon black(HCB) particles were used to tune the elasticity of conductive rubber composites. Unique hollow morphology produced a better compression recovery of HCB than other solid carbon black, such as acetylene black. When the coupling agent was bonded to HCB, their conductive silicone rubber composites were featured by high stretching resilience, a fast compression recovery and excellent conductivity to satisfy the electromagnetic interference shielding requirements. Importantly, the rubber composites with coupling HCB had extremely low variations of mechanical property, conductivity and EMI shielding effectiveness after thermal accelerated aging tests. It is therefore revealed that the elasticity of HCB and its interfacial chemical coupling with rubber chains both play crucial roles in adjusting the elasticity of conductive rubber to sever long-term EMI protection.

Keywords

Conductivity / Carbon black / Elasticity / Electromagnetic shielding / Silicone rubber

Cite this article

Download citation ▾
Jihua Zhang, Fengbo Chen, Yunfeng Zhao, Mingjie Liu. Improving Elasticity of Conductive Silicone Rubber by Hollow Carbon Black. Chemical Research in Chinese Universities, 2019, 35(6): 1124-1132 DOI:10.1007/s40242-019-9057-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo Y L. Chem. Res. Chinese Universities, 2001, 17(S1): 49.

[2]

Qian M, Sui J, Wang X, Zhu Y. Chem. Res. Chinese Universities, 2019, 35(1): 139.

[3]

Kwon S K, Ahn J M, Kim G H, Chun C H, Hwang J S, Lee J H. Polym. Eng. Sci., 2002, 42: 2165.

[4]

Sau K P, Khastgir D, Chaki T K. Macromol. Mater. Eng., 1998, 258: 11.

[5]

Das N C, Chaki T K, Khastgir D, Chakraborty A. Adv. Polym. Tech., 2001, 20: 226.

[6]

Tang M, Xing W, Wu J, Huang G, Xiang K, Guo L, Li G. J. Ma-ter. Chem. A, 2015, 3: 5942.

[7]

Nakaramontri Y, Pichaiyut S, Wisunthorn S, Nakason C. Eur. Polym. J., 2017, 90: 467.

[8]

Wu D, Lv Q, Feng S, Chen J, Yao X. Carbon, 2015, 95: 380.

[9]

Dai K, Xu X B, Li Z M. Polymer, 2007, 48: 849.

[10]

Kost J, Narkis M, Foux A. J. Appl. Polym. Sci., 1984, 29: 3937.

[11]

Kost J, Narkis M, Foux A. Polym. Eng. Sci., 1983, 23: 567.

[12]

Sethi D, Ram R, Khastgir D. Polym. Int., 2017, 66: 1295.

[13]

Zhang J, Zhang S, Feng S, Jiang Z. Polym. Int., 2005, 54: 1175.

[14]

Sohi N J S, Rahaman M, Khastgir D. Polym. Compos., 2011, 32: 1148.

[15]

Al-Ghamdi A A, Al-Hartomy O A, Al-Solamy F R, Dishovsky N, Atanasov N. Compos. Part B: Eng., 2016, 96: 231.

[16]

Kong J H, Jang N S, Kim S H, Kim J M. Carbon, 2014, 77: 199.

[17]

Zhang Y C, Dai K, Tang J H, Ji X, Li Z M. Mater. Lett., 2010, 64: 1430.

[18]

Wu X, Lu C, Zhang X, Zhou Z. J. Mater. Chem. A, 2015, 3: 13317.

[19]

Wang L, Ding T, Wang P. Sensor Actuat. A: Phys., 2007, 135: 587.

[20]

Hu M, Zhang N, Guo Q, Cai X, Zhou S, Yang J. Mater. Design, 2016, 100: 263.

[21]

Liu H, Zhu L L, He Y, Cheng B W. Mater. Design, 2017, 113: 254.

[22]

Wu J, Dong J, Wang Y, Gond B K. Polym. Degrad. Stabil., 2017, 135: 43.

[23]

Zhang J, Ren L, Wang L, Zhao Y. Aerosp. Mater. Technol., 2011, 41: 79.

[24]

Nanda M, Tripathy D K. J. Appl. Polym. Sci., 2010, 116: 2758.

[25]

Liu J, Lu Y L, Tian M, Li F, Shen J, Gao Y, Zhang L. Adv. Funct. Mater., 2013, 23: 1156.

[26]

Zhang J, Wang L, Zhao Y. Mater. Design, 2013, 50: 322.

[27]

Liu J, Liu J, Wang S, Huang J, Wu S, Tang Z, Guo B, Zhang L. J. Mater. Chem. A, 2017, 5: 25660.

[28]

Zhang J, Zao W, Wang L, Zhao Y. Mater. Design, 2013, 52: 896.

[29]

Hidaka K, Moine L, Collin G, Labarre D, Grossiord J L, Huang N, Osuga K, Wada S, Laurent A. J. Mech. Behav. Biomed. Mater., 2011, 4: 2161.

[30]

Kobayashi M, Toda H, Takeuchi A, Uesugi K, Suzuki Y. Mater. Charact., 2012, 69: 52.

[31]

Mondal S, Ganguly S, Das P, Khastgir D, Das N C. Compos. Part B: Eng., 2017, 119: 41.

[32]

Gillen K T, Bernstein R, Wilson M H. Polym. Degrad. Stabil., 2005, 87: 257.

[33]

Maiti A, Gee R H, Weisgraber T, Chinn S, Maxwell R S. Polym. Degrad. Stabil., 2008, 93: 2226.

[34]

Liu J, Li X, Xu L, He T. J. Mater. Eng. Perform., 2017, 26: 1735.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/