Theoretical Investigation on Mechanism, Thermochemistry, and Kinetics of the Gas-phase Reaction of 2-Propargyl Radical with Formaldehyde

Tien V. Pham

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 884 -891.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 884 -891. DOI: 10.1007/s40242-019-9054-0
Article

Theoretical Investigation on Mechanism, Thermochemistry, and Kinetics of the Gas-phase Reaction of 2-Propargyl Radical with Formaldehyde

Author information +
History +
PDF

Abstract

Gas-phase mechanism and kinetics of the reactions of the 2-propargyl radical(H2CCCH), an important intermediate in combustion processes, with formaldehyde were investigated using ab initio molecular orbital theory at the coupled-cluster CCSD(T)//B3LYP/6-311++G(3df, 2p) method in conjunction with transition state theory(TST), variational transition state theory(VTST) and Rice-Ramsperger-Kassel-Marcus(RRKM) calculations for rate constants. The potential energy surface(PES) constructed shows that the H2CCCH+HCHO reaction has six main entrances, including two H-abstraction and four additional channels, in which the former is energetically more favorable. The H-abstraction channels slide down to two quite weak pre-complexes COM-01(−9.3 kJ/mol) and COM-02(−8.1 kJ/mol) before going via energy barriers of 71.3(T0/P1) and 63.9 kJ/mol(T0/P2), respectively. Two post-complexes, COM-1(−17.8 kJ/mol) and COM-2(−23.4 kJ/mol) created just after coming out from T0/P1 and T0/P2, respectively, can easily be decomposed via barrier-less processes yielding H2CCCH2+CHO(P1, −12.4 kJ/mol) and HCCCH3+CHO(P2, −16.5 kJ/mol), respectively. The additional channels occur initially by formation of four intermediate states, H2CCCHCH2O(I1, 1.1 kJ/mol), HCCCH2CH2O(I3, 4.5 kJ/mol), H2CCCHOCH2(I4, 10.2 kJ/mol), and HCCCH2OCH2(I6, 19.1 kJ/mol) via energy barriers of 66.3, 59.2, 112.2, and 98.6 kJ/mol at T0/1, T0/3, T0/4, and T0/6, respectively. Of which two channels producing I4 and I6 can be ignored due to coming over the high barriers T0/4 and T0/6, respectively. The rate constants and product branching ratios for the low-energy channels calculated show that the H2CCCH+HCHO reaction is almost pressure-independent. Although the H2CCCH+HCHO→I1 and H2CCCH+HCHO→I3 channels become dominant at low temperature, however, they are less competitive channels at high temperature.

Keywords

Reaction mechanism / Propargyl radical / Formaldehyde / Potential energy surface(PES) / B3LYP / CCSD(T) / Rice-Ramsperger-Kassel-Marcus(RRKM) / Kinetics

Cite this article

Download citation ▾
Tien V. Pham. Theoretical Investigation on Mechanism, Thermochemistry, and Kinetics of the Gas-phase Reaction of 2-Propargyl Radical with Formaldehyde. Chemical Research in Chinese Universities, 2019, 35(5): 884-891 DOI:10.1007/s40242-019-9054-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rahman K. Clin. Interv. Agin., 2007, 2: 219.

[2]

Herbst E. Ann. Rev. Phys. Chem., 1995, 46: 27.

[3]

Bettens R P A, Herbst E. J. Astrophys., 1996, 468: 686.

[4]

Pope C J, Miller J A. Proceed. Combust. Inst., 2000, 28: 1519.

[5]

Kaiser R I, Lee Y T, Suits A G. J. Chem. Phys., 1996, 105: 8705.

[6]

Canosa-Mas C E, Ellis M, Frey H M, Walsh R. Int. J. Chem. Kinet., 1984, 16: 1103.

[7]

Joblin C, Tielens A G G M, Cherchneff I. Europ. Astro. Soc. Pub. Seri., 2011, 46: 177.

[8]

D’Anna A, Violi A. J. Ener. Fuel., 2005, 19: 79.

[9]

Miller J A, Klippenstein S J. J. Phys. Chem. A, 2001, 105: 7254.

[10]

Miller J A, Klippenstein S J. J. Phys. Chem. A, 2003, 107: 7783.

[11]

Park J, Nguyen H M T, Xu Z F, Lin M C. J. Phys. Chem. A, 2009, 113: 12199.

[12]

Geppert W D, Eskola A J, Timonen R S, Halonen L. J. Phys. Chem. A, 2004, 108: 4232.

[13]

Wang X, Song J, Gang L, Li Z. J. Phys. Chem. A, 2019, 123: 1015.

[14]

Pham T V. Int. J. Sci. Eng. App., 2016, 5: 356.

[15]

Pham T V. Int. J. Sci. Eng. App. Sci., 2018, 4: 12.

[16]

Wheeler S E, Robertson K A, Allen W D, Bomble Y J, Stanton J F. J. Phys. Chem. A, 2007, 111: 3819.

[17]

Shafir E V, Slagle I R, Knyazev V D. J. Phys. Chem. A, 2003, 107: 8893.

[18]

Tang W, Tranter R S, Brezinsky K. J. Phys. Chem. A, 2005, 109: 6056.

[19]

Le T N, Mebel A M, Kaiser R I. J. Comput. Chem., 2001, 13: 1522.

[20]

Ramos A F, Miller J A, Klippenstein S J, Truhlar D G. Chem. Rev., 2006, 106: 4560.

[21]

Lee H, Nam M, Choia J. J. Chem. Phys., 2006, 124: 044311.

[22]

Matsugi A, Miyoshi A. Int. J. Chem. Kinet., 2012, 44: 206.

[23]

Fahr A, Nayak A. Int. J. Chem. Kinet., 2000, 32: 118.

[24]

Nguyen H T M, Carl S A, Peeters J, Nguyen M T. Phys. Chem. Chem. Phys., 2004, 6: 4111.

[25]

Carl S A, Nguyen H T M, Elsamra R I M, Nguyen M T, Peeters J. J. Chem. Phys., 2005, 122: 114307.

[26]

Atkinson D B, Hudgens J W. J. Chem. Phys., 1999, 103: 4242.

[27]

Matsugi A, Miyoshi A. Int. J. Chem. Kinet., 2012, 44: 206.

[28]

Singh H J, Gour N K. Indi. J. Chem., 2010, 49: 1565.

[29]

Georgievskii Y, Miller J A, Klippenstein S J. Phys. Chem. Chem. Phys., 2007, 9: 4259.

[30]

Becke A D. J. Chem. Phys., 1992, 96: 2155.

[31]

Becke A D. J. Chem. Phys., 1992, 97: 9173.

[32]

Becke A D. J. Chem. Phys., 1993, 98: 5648.

[33]

Gonzalez C, Schlegel H B. J. Chem. Phys., 1989, 90: 2154.

[34]

Gonzalez C. J. Chem. Phys., 1990, 94: 5523.

[35]

Bartlett R J, Musial M. Rev. Mod. Phys., 2007, 79: 291.

[36]

NIST Computational Chemistry Comparison and Benchmark Database, Release 19, http://cccbdb.nist.gov/, 2018

[37]

Frisch M J, Trucks G, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E Jr., Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Version 7.0, 2009, Wallingford CT: Gaussian Inc..

[38]

Eyring H. J. Chem. Phys., 1935, 3: 107.

[39]

Holbrook K A, Pilling M J, Robertson S H. Unimolecular Reactions, 1996, Chichester: J. Wiley.

[40]

Klippenstein S. J., Wagner A. F., Dunbar R. C., Wardlaw D. M., Robertson S. H., VARIFLEX, Version 1.0, Argonne National Laboratory, Argonne, 1999

[41]

Robertson S. H., Glowacki D. R., Liang C. H., Morley C. M., Pilling M. J., MESMER, An Object-oriented Ctt Program for Carrying Out ME Calculations and Eigenvalue-eigenvector Analysis on Arbitrary Multiple Well Systems, http://sourceforge.net/projects/mesmer/, 2018

[42]

Eckart C. Phys. Rev., 1930, 35: 1303.

[43]

Hippler H, Troe J, Wendelken H J. J. Chem. Phys., 1983, 78: 6709.

[44]

Tardy D C, Rabinovitch B S. J. Chem. Phys., 1966, 45: 3720.

[45]

Chase M W Jr. NIST-JANAF Thermochemical Tables, 1998 4th Ed. Washington D. C.: American Chemical Society American Institute of Physics for the National Institute of Standards and Technology, Woodbury, New York

[46]

Wheeler S E, Robertson K A, Allen W D, Schaefer H F, Bomble Y J, Stanton J F. J. Phys. Chem. A, 2007, 111: 3819.

[47]

Gurvich L V, Veyts I V, Alcock C B. Thermodynamic Properties of Individual Substances, 1989 4th Ed. New York: Hemisphere Pub. Co..

[48]

Duncan J L. J. Molec. Phys., 1974, 28: 1177.

[49]

Yu J, Dong S H, Sun G H. Phys. Lett. A, 2004, 322: 290.

[50]

Brown R L. J. Res. Natl. Bur. Stand., 1981, 86: 357.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/