In-situ Reduction Synthesis of Bi/BiOI Heterostructure Films with High Photoelectrochemical Activity

Yanfei Liu , Yu Chu , Zhuoyang Du , Yan Sun , Feng Cao

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 662 -666.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 662 -666. DOI: 10.1007/s40242-019-9023-7
Article

In-situ Reduction Synthesis of Bi/BiOI Heterostructure Films with High Photoelectrochemical Activity

Author information +
History +
PDF

Abstract

The Bi/BiOI heterostructure films grew perpendicular to the FTO substrates were synthesized in-situ through an electrochemical deposition and hydrogen reduction method. The metallic Bi nanoparticles were decorated onto the surface of BiOI nanosheets via an in-situ reduction, induced 6.3 times improvement of photocurrent density, compared to the pristine BiOI at 1.23 V vs. reversible hydrogen electrode(RHE). The enhancement of photoelectrochemical performance was attributed not only to the efficient separation of charge resulted from surface plasmon resonance effect, but also to the fast charge transfer at the interface due to the in-situ reduction of the films. This work provided a simple and facile strategy to in-situ construct heterostructure films, and showed an effective method to improve the photoelectrochemical activity of Bi-based semiconductors.

Keywords

Photoelectrochemical / BiOI film / In-situ reduction / Surface plasmon resonance

Cite this article

Download citation ▾
Yanfei Liu, Yu Chu, Zhuoyang Du, Yan Sun, Feng Cao. In-situ Reduction Synthesis of Bi/BiOI Heterostructure Films with High Photoelectrochemical Activity. Chemical Research in Chinese Universities, 2019, 35(4): 662-666 DOI:10.1007/s40242-019-9023-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong L, Feng Y, Wang L, Feng W. Chem. Soc. Rev., 2018, 47: 7339.

[2]

Li S, Cai J, Liu Y, Gao M, Cao F, Qin G. Sol. Energy Mater. Sol. Cells, 2018, 179: 328.

[3]

Wang L, Li Q. Chem. Soc. Rev., 2018, 47: 1044.

[4]

He R, Xu D, Cheng B, Yu J, Ho W. Nanoscale Horiz., 2018, 3: 464.

[5]

Islam M J, Kim H K, Reddy D A, Kim Y, Ma R, Baek H, Kim J, Kim T K. Dalton Trans., 2017, 46: 6013.

[6]

Cao F, Wang J, Li S, Cai J, Tu W, Lv X, Qin G. J. Alloy Compd., 2015, 639: 445.

[7]

Wang S, Yan X, Zhu Y, Deng D, He H, Luo L. Chem. Res. Chinese Universities, 2018, 345: 701.

[8]

Wang J, Wang Y, Liu Y, Lv X, Li S, Zhou J, Cao F, Qins G. Chem. Res. Chinese Universities, 2016, 323: 338.

[9]

Yu L, Zhang Y, He J, Zhu H, Zhou X, Li M, Yang Q, Xu F. J. Alloy Compd., 2018, 753: 601.

[10]

Luo Z, Li C, Liu S, Wang T, Gong J. Chem. Sci., 2017, 8: 91.

[11]

Lu Z, Song W, Ouyang C, Wang H, Zeng D, Xie C. RSC Adv., 2017, 53: 33552.

[12]

Jiao Z, Shang M, Liu J, Lu G, Wang X, Bi Y. Nano Energy, 2017, 31: 96.

[13]

Huang Y, Kang S, Yang Y, Qin H, Ni Z, Yang S, Li X. Appl. Catal. B, 2016, 196: 89.

[14]

Guo W, Liu H. Chem. Res. Chinese Universities, 2017, 33(1): 129.

[15]

Dong F, Zhao Z, Sun Y, Zhang Y, Yan S, Wu Z. Environ. Sci. Technol., 2015, 49: 12432.

[16]

Dong F, Li Q, Sun Y, Ho W K. ACS Catal., 2014, 4: 4341.

[17]

Hu J, Xu G, Wang J, Lv J, Zhang X, Zheng Z, Xie T, Wu Y. New J. Chem., 2014, 38: 4913.

[18]

Zhu Q L, Song F Z, Wang Q J, Tsumori N, Himeda Y, Autrey T, Xu Q. J. Mater. Chem. A, 2018, 6: 5544.

[19]

Dong Z, Wu M, Wu J, Ma Y, Ma Z. Dalton Trans., 2015, 44: 11901.

[20]

Liao Z, Lan Y, Wang K, Lei M, Liao Y, Mao H, Ma J, Zhao S. Chem. Res. Chinese Universities, 2018, 34(1): 85.

[21]

Jia Q, Zhang S, Gao Z, Yang P, Gu Q. Catal. Sci. Technol., 2019, 9: 425.

[22]

Ma H, Mahadik M A, Park J W, Kumar M, Chung H S, Chae W S, Kong G W, Lee H H, Choi S H, Jang J S. Nanoscale, 2018, 10: 22560.

[23]

Xiao S, Ouyang Y, Li X, Wang Z, Wu P, Deng Z, Chen L, Su B. Chem. J. Chinese Universities, 2018, 396: 1235.

[24]

Huang Y, Long B, Li H, Balogun M S, Rui Z, Tong Y, Ji H. Adv. Mater. Interfaces, 2015, 2: 1500249.

[25]

Yan P, Xu L, Cheng X, Qian J, Li H, Xia J, Zhang Q, Hua M, Li H. J. Electro. Chem., 2017, 804: 64.

[26]

Zhu G, Hojamberdiev M, Zhang S, Din S T U, Yang W. Applied Surface Science, 2019, 467: 968.

[27]

Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J, Carmalt C J. Chem. Sci., 2016, 7: 4832.

[28]

Li Q, Gao S, Hu J, Wang H, Wu Z. Catal. Sci. Technol., 2018, 8: 5270.

[29]

Yu Y, Cao C, Liu H, Li P, Wei F, Jiang Y, Song W. J. Mater. Chem. A, 2014, 2: 1677.

[30]

Zhang W, Wang Z, Shen Y, Xi M, Chu X, Xi C. Chem. Res. Chinese Universities, 2015, 31(6): 1007.

[31]

Atwater H A, Polman A. Nat. Mater., 2010, 9: 205.

[32]

Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y. Chem. Commun., 2011, 47: 7054.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/