Improving Energy Metabolism of Deproteinized Extract of Calf Blood Through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice

Tong Zhou , Guangyu Xu , Luyao Sun , Zhenxiang Yu , Guixia Wang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 427 -433.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 427 -433. DOI: 10.1007/s40242-019-9021-9
Article

Improving Energy Metabolism of Deproteinized Extract of Calf Blood Through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice

Author information +
History +
PDF

Abstract

Herein, we described the physicochemical properties of deproteinized extract of calf blood(DECB) and established a hypoxia model treated with or without DECB to detect the sugar, lactic acid, protein, and ATP contents of mice and then identified and analyzed the differentially expressed genes between two groups using mRNA expression chip. According to the results of the airtight hypoxia experiment, mice in the model+DECB group had a significantly prolonged time of hypoxia tolerance compared with the model group. The biochemical test indicated that DECB could significantly increase the level of sugar, ATP and proteins and reduce the amount of lactic acid in mice. It also revealed that Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh genes were involved in mice energy metabolism, and were closely associated with metabolic signaling pathway. These results suggest that DECB might be a potential drug to treat metabolic diseases. Among the genes with differential expression under hypoxia, Angptl4, Cyp8b1, and Ehhadh were critical factors for sugar metabolism. Hmgcs2 provided energy directly, and Cptla regulated cellular inflammatory responses, promoting energy metabolism.

Keywords

Deproteinized extract of calf blood / Energy metabolism / mRNA chip

Cite this article

Download citation ▾
Tong Zhou, Guangyu Xu, Luyao Sun, Zhenxiang Yu, Guixia Wang. Improving Energy Metabolism of Deproteinized Extract of Calf Blood Through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice. Chemical Research in Chinese Universities, 2019, 35(3): 427-433 DOI:10.1007/s40242-019-9021-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu W, Zeng L N, Peng Y Y, Lu X H, Li C Y, Wang Z C. European Review for Medical and Pharmacological Sciences, 2014, 18(22): 3406.

[2]

Xu G Y, Xu J H, Han X, Li H Y, Yuan G X, An L P, Du P G. International Immunopharmacology, 2018, 56: 212.

[3]

Xu G Y, Han X, Yuan G X, An L P, Du P G. PLoS One, 2017, 12(7): e0180899.

[4]

Chen M J, Gong L, Qiu X D. Chinese Journal of Ophthalmology, 2012, 48(12): 1083.

[5]

Fan C, Wang Y, Zhang Y, Lang L, Deng X, Cheng Y. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2014, 32(12): 924.

[6]

Huang D W, Sherman B T, Tan Q, Collins J R, Alvord W G, Roayaei J, Stephens R, Baseler M W, Lane H C, Lempicki R A. Genome Biology, 2007, 8(9): R183.

[7]

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. The Gene Ontology Consortium Nature Genetics, 2000, 25(1): 25.

[8]

Shi Q, Zhou W, Chen C, Zhang B Y, Xiao K, Zhang X C, Shen X J, Li Q, Deng L Q, Dong J H, Lin W Q, Huang P, Jiang W J, Lv J, Han J, Dong X P. PLoS One, 2015, 10(10): e0139552.

[9]

Irwin D M, Tan H. Molecular Phylogenetics and Evolution, 2015, 70: 195.

[10]

Zhang T T, Zhang G M, Jin Y H, Guo Y X, Wang Z, Fan Y X, El-Samahy M A, Wang F. Tissue & Cell, 2017, 49(5): 603.

[11]

Helenius T O, Misiorek J O, Nystrom J H, Fortelius L E, Habte-zion A, Liao J, Asghar M N, Zhang H, Azhar S, Omary M B, Toivola D M. Molecular Biology of the Cell, 2015, 26(12): 2298.

[12]

Kang D Y, Nipin S P, Darvin P, Joung Y H, Byun H J, Do C H, Park K D, Park M N, Cho K H, Yang Y M. Animal Biotechnology, 2017, 28(3): 189.

[13]

Gobin S, Bonnefont J P, Prip-Buus C, Mugnier C, Ferrec M, Demaugre F, Saudubray J M, Rostane H, Djouadi F, Wilcox W, Cederbaum S, Haas R, Nyhan W L, Green A, Gray G, Girard J, Thuillier L. Human Genetics, 2002, 111(2): 179.

[14]

Diaz-Rua R, Palou A, Oliver P. Food & Nutrition Research, 2016, 60: 33554.

[15]

Napal L, Marrero P F, Haro D. Journal of Molecular Biology, 2005, 354(4): 751.

[16]

Gao X, Li K, Hui X, Kong X, Sweeney G, Wang Y, Xu A, Teng M, Liu P, Wu D. The Biochemical Journal, 2011, 435(3): 723.

[17]

Kim L, Kim H G, Kim H, Kim H H, Park S K, Uhm C S, Lee Z H, Koh G Y. Biochem. J., 2000, 346: 603.

[18]

Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto S, Sugano S, Tanihara H, Masuho Y, Suda T. Cancer Research, 2003, 63(20): 6651.

[19]

Janssen A W F, Dijk W, Boekhorst J, Kuipers F, Groen A K, Lukovac S, Hooiveld G, Kersten S. Biochimica et Biophysica Acta, 2017, 1862(10): 1056.

[20]

Bertaggia E, Jensen K K, Castro-Perez J, Xu Y, di Paolo G, Chan R B, Wang L, Haeusler R A. American Journal of Physiology Endocrinology and Metabolism, 2017, 313(2): E121.

[21]

Mork L M, Strom S C, Mode A, Ellis E C. Journal of Clinical and Experimental Hepatology, 2016, 6(2): 87.

[22]

Watanabe M, Morimoto K, Houten S M, Kaneko-Iwasaki N, Sugizaki T, Horai Y, Mataki C, Sato H, Murahashi K, Arita E, Schoonjans K, Suzuki T, Itoh H, Auwerx J. PLoS One, 2012, 7(8): e38286.

[23]

Houten S M, Denis S, Argmann C A, Jia Y, Ferdinandusse S, Reddy J K, Wanders R J. Journal of Lipid Research, 2012, 53(7): 1296.

[24]

Rosen M B, Das K P, Wood C R, Wolf C J, Abbott B D, Lau C. Toxicology, 2013, 308: 129.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/