Pd/TiO2 Nanospheres with Three-dimensional Hyperstructure for Enhanced Photodegradation of Organic Dye

Huan Wang , Liguang Xiao , Chao Wang , Bin Lin , Sa Lyu , Xuefeng Chu , Yaodan Chi , Xiaotian Yang , Xinyan Wang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 667 -673.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 667 -673. DOI: 10.1007/s40242-019-9014-8
Article

Pd/TiO2 Nanospheres with Three-dimensional Hyperstructure for Enhanced Photodegradation of Organic Dye

Author information +
History +
PDF

Abstract

Pd/TiO2 nanospheres assembled from nanorods with three-dimensional hyperstructure for enhanced photodegradation of organic dye was prepared by a sample solvothermal method. Further, it was used for degradation of methyl orange(MO) under the illumination of visible-light(simulated). The results show that Pd/TiO2 with 2%(mass fraction) Pd exhibits the noticeable activity in photodegrading of MO. The detailed analysis shows that this enhancement is attributed to the reduction of the rate of electron-hole recombination and surface plasmon resonance of Pd. The high activity and good stability of the obtained Pd/TiO2 nanospheres make it a promising photocatalyst for solving the environmental pollution problems.

Keywords

TiO2 / Pd / Photocatalytic degradation / Surface plasmon resonance

Cite this article

Download citation ▾
Huan Wang, Liguang Xiao, Chao Wang, Bin Lin, Sa Lyu, Xuefeng Chu, Yaodan Chi, Xiaotian Yang, Xinyan Wang. Pd/TiO2 Nanospheres with Three-dimensional Hyperstructure for Enhanced Photodegradation of Organic Dye. Chemical Research in Chinese Universities, 2019, 35(4): 667-673 DOI:10.1007/s40242-019-9014-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Daghrir R, Drogui P, Robert D. Industrial & Engineering Chemistry Research, 2013, 52: 3581.

[2]

Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, OShea K, Mohammad H, Dionysiou D D. Applied Catalysis B: Environmental, 2012, 52: 331.

[3]

Seh Z W, Liu S, Low M, Zhang S Y, Liu Z, Mlayah A, Han M Y. Adv. Mater., 2012, 52: 2310.

[4]

Jiang B, Hou Z, Tian C, Zhou W, Zhang X, Wu A, Tian G, Pan K, Ren Z, Fu H. CrystEngComm, 2013, 52: 5821.

[5]

Kobosko S M, Jara D H, Kamat P V. ACS Appl. Mater. Interfaces, 2017, 52: 33379.

[6]

Duan H, Wang Z, Cui L, Lin B, Zhou Y. Industrial & Engineering Chemistry Research, 2018, 52: 12358.

[7]

Zhang C, Zhou Y, Bao J, Sheng X, Fang J, Zhao S, Zhang Y, Chen W. ACS Applied Materials & Interfaces, 2018, 52: 18796.

[8]

Deng Q R, Xia X H, Guo M L, Gao Y, Shao G. Materials Letters, 2011, 52: 2051.

[9]

Ayati A, Ahmadpour A, Bamoharram F F, Tanhaei B, Manttari M, Sillanpaa M. Chemosphere, 2014, 52: 163.

[10]

Gupta B, Melvin A A, Matthews T, Dash S, Tyagi A K. Renewable and Sustainable Energy Reviews, 2016, 52: 1366.

[11]

Wang X, Wu T, Wang H, Su X. Materials Research Bulletin, 2016, 52: 423.

[12]

Zhang Q, Ye J, Tian P, Lu X, Lin Y, Zhao Q, Ning G. RSC Advances, 2013, 52: 9739.

[13]

Lacerda A M, Larrosa I, Dunn S. Nanoscale, 2015, 52: 12331.

[14]

Kelly K L, Coronado E, Zhao L L, Schatz George C. J. Phys. Chem. B, 2003, 52: 66.

[15]

Leong K H, Chu H Y, Ibrahim S, Saravanan P. Beilstein J. Nano-technol, 2015, 52: 428.

[16]

Li H, Yu H, Sun L, Zhai J, Han X. Nanoscale, 2015, 52: 1610.

[17]

Bai X, Lv L, Zhang X, Hua Z. Journal of Colloid and Interface Science, 2016, 52: 1.

[18]

Xu Y, Zhang C, Zhang L, Zhang X, Yao H, Shi J. Energy & Environmental Science, 2016, 52: 2410.

[19]

Tan D, Zhang J, Shi J, Li S, Zhang B, Tan X, Zhang F, Liu L, Shao D, Han B. ACS Applied Materials & Interfaces, 2018, 52: 24516.

[20]

Zhou W, Guan Y, Wang D, Zhang X, Liu D, Jiang H, Wang J, Liu X, Liu H, Chen S. Chemistry: An Asian Journal, 2014, 52: 1648.

[21]

Yang W., Xiong Y., Zou L., Zou Z., Li D., Mi Q., Wang Y., Yang H., Nanoscale Research Letters, 2016, 11

[22]

Yu L, Li D. Catalysis Science & Technology, 2017, 52: 635.

[23]

Xu C, Huang W, Li Z, Deng B, Zhang Y, Ni M, Cen K. ACS Catalysis, 2018, 52: 6582.

[24]

Li H, Gan S, Wang H, Han D, Niu L. Adv. Mater, 2015, 52: 6906.

[25]

Shah M W, Zhu Y, Fan X, Zhao J, Li Y, Asim S, Wang C. Scientific Reports, 2015, 52: 15804.

[26]

Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. J. Am. Chem. Soc., 2010, 52: 11856.

[27]

Li H, Wu T, Cai B, Ma W, Sun Y, Gan S, Han D, Niu L. Applied Catalysis B: Environmental, 2015, 52: 344.

[28]

Khachatryan L, Vejerano E, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2011, 52: 8559.

[29]

Fenoglio I, Greco G, Livraghi S, Fubini B. Chem. Eur. J, 2009, 52: 4614.

[30]

Zhang R, Wang H, Tang S, Liu C, Dong F, Yue H, Liang B. ACS Catalysis, 2018, 52: 9280.

[31]

Fan Y, Ma W, Han D, Gan S, Dong X, Niu L. Adv. Mater., 2015, 52: 3767.

[32]

Wang X, Wang H, Yang X, Su X. Chem. Res. Chinese Universities, 2016, 32(4): 661.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/