Converting Thiophene in Simulated Coking Crude Benzene to N, N-Dimethyl-2-thiophenecarboxamide by Dimethylcarbamyl Chloride Under Mild Conditions

Xizhou Shen , Hao Song , Liuya Fang , Hang Deng , Feng Gan , Zhi Shen

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 674 -679.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 674 -679. DOI: 10.1007/s40242-019-8414-0
Article

Converting Thiophene in Simulated Coking Crude Benzene to N, N-Dimethyl-2-thiophenecarboxamide by Dimethylcarbamyl Chloride Under Mild Conditions

Author information +
History +
PDF

Abstract

Since the content of thiophene in coking crude benzene is high, it is necessary to remove it from coking crude benzene for efficient utilization. In this study, an important intermediate, N, N-dimethyl-2-thiophenecar-boxamide, was synthesized from thiophene and dimethylcarbamyl chloride. The influences of the dosages of dimethylcarbamyl chloride and ZnCl2 catalyst, reaction temperature and time on the removal rate were further explored based on the reaction kinetics. The structure of the target product was characterized by means of MS, 1H NMR and 13C NMR. The removal rate of thiophene was 98.14% after the reaction for 2 h and thiophene was almost removed after the reaction for 3 h under the optimal reaction conditions[a molar ratio of n(thiophene): n(dimethylcarbamyl chloride):n(ZnCl2)=1:12:10, 300 r/min, 318 K and 101.325 kPa]. The acylation of thiophene with dimethylcarbamyl chloride was approximately in accord with the first order kinetic equation at 303–323 K. The activation energy was 53.9850 kJ/mol and the pre-exponential factor was 1.4521×109 h−1.

Keywords

Coking crude benzene / F-C acylation / Acyl chloride / Thiophene / Thiophene derivative

Cite this article

Download citation ▾
Xizhou Shen, Hao Song, Liuya Fang, Hang Deng, Feng Gan, Zhi Shen. Converting Thiophene in Simulated Coking Crude Benzene to N, N-Dimethyl-2-thiophenecarboxamide by Dimethylcarbamyl Chloride Under Mild Conditions. Chemical Research in Chinese Universities, 2019, 35(4): 674-679 DOI:10.1007/s40242-019-8414-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dieterle M, Schwab E. Topics in Catalysis, 2016, 59(8/9): 817.

[2]

Eßer J, Wasserscheid P, Jess A. Green Chemistry, 2004, 6(7): 316.

[3]

Vagner S E, Tryasunov B G. Solid Fuel Chemistry, 2012, 46(4): 225.

[4]

Liu D, Gui J, Song L, Zhang X, Sun Z. Liquid Fuels Technology, 2008, 26(9): 973.

[5]

Bosmann A., Datsevich L., Jess A., Lauter A., Schmitz C., Wasserscheid P., Chemical Communications, 2001, (23), 2494

[6]

Li F T, Ying L, Sun Z M. Energy & Fuels, 2010, 24(8): 4285.

[7]

Tan X. Y., Wang X. S., Chemical Industry and Engineering Progress, 1998, (02), 57

[8]

Liao J J, Zhang Y J, Wang W B, Xie Y Y, Chang L P. Adsorption, 2012, 18(4): 181.

[9]

Guo S C, Hu H Q. Coal Chemical Technolgy(3rd Edition), 2012, Beijing: Chemical Industry Press.

[10]

Zainab N, Jaf M A, Hussein A M, Jiang Z T, Bogdan Z D. Molecular Catalysis, 2018, 459: 21.

[11]

Yik E, Iglesia E. Journal of Catalysis, 2018, 368: 411.

[12]

Li G X, Zhao L M, Zhu H Y, Liu X P, Ma H F, Yu Y C, Guo W Y. Physical Chemistry Chemical Physics, 2017, 19(26): 17449.

[13]

Sepulveda C, Belliere V, Laurenti D, Escalona D, García R, Geantet C, Vrinat M. Applied Catalysis A: General, 2010, 393(1/2): 288.

[14]

Garcia C L, Lercher J A. Physical Chemistry, 1992, 96(6): 2669.

[15]

Ling M. Y., Chen H. H., Applied Mechanics & Materials, 2011, (130–134), 1066

[16]

Xu H, Zhang D D, Wu F M, Cao R Q. Fuel, 2017, 208: 508.

[17]

Luo G H, Xu X, Yang C Y, Zhang G Y. Fuel & Chemical Processes, 2001, 32(2): 86.

[18]

Liao J J, Wang Y S, Chang L P, Bao W R. Green Chemistry, 2015, 17(5): 3164.

[19]

Liao J J, Bao L, Wang W B, Xie Y Y, Chang J Y. Fuel Processing Technology, 2014, 117: 38.

[20]

Pan C G, Ma H Z. Advanced Materials Research, 2012, 524–527: 876.

[21]

Kang Z J, Ma H Z, Wang B. Industrial & Engineering Chemistry Research, 2009, 48(20): 9346.

[22]

Wang W B, Ma L, Liao J J, Xie Y Y, Chang J Y, Chang L P. Chinese Journal of Catalysis, 2012, 33(2): 323.

[23]

Niu C C, Cao X P, Chen L J, Zeng A W. Chemical Industry and Engineering Processese, 2012, 29(3): 11.

[24]

Gao J, Chen X, Ren N, Wu W, Li C, Meng H. AIChE Journal, 2013, 59(8): 2966.

[25]

Chen X Y, Gao J J, Lu Y Z, Meng H, Li C X. Fuel Processing Technology, 2015, 130: 7.

[26]

Li Y W, Ma H Z. Advanced Materials Research, 2012, 455/456(4): 966.

[27]

Sun H B, Hua R M, Chen S J, Yin Y W. Advanced Synthesis & Catalysis, 2006, 348(14): 1919.

[28]

Khatri C, Jain D, Rani A. Fuel, 2010, 89(12): 3853.

[29]

Makihara M, Aoki H, Komura K. Catalysis Letters, 2018, 148(10): 2974.

[30]

Kawamura M, Cui D M, Hayashi T, Shimada S. Tetrahedron Letters, 2003, 44(42): 7715.

[31]

Kawamura M, Cui D M, Shimada S. Cheminform, 2007, 62(39): 9201.

[32]

Lsaev Y, Fripiat J J. Journal of Catalysis, 1999, 182(1): 257.

[33]

Xu K, Hu Y B, Zhang S, Zha Z G, Wang Z Y. Chemistry-A European Journal, 2012, 18(32): 9793.

[34]

Bao Y S, Wang L L, Jia M L, Xu A J, Agula B, Baiyin M, Zhaorigetu B. Green Chemistry, 2016, 18(13): 3808.

[35]

Mohammad A, Chandra P, Ghosh T, Carraro M, Mobin S M. Inorganic Chemistry, 2017, 56(17): 10590.

[36]

Asai S, Ban K, Monguchi Y, Sajiki H, Sawama Y. Synlett., 2018, 29(3): 322.

[37]

Han X Z, Ouyang G P, He B A. Guangzhou Chemical Industry, 2013, 41(5): 113.

[38]

Shirinian V Z, Leonid L, Belen K, Krayushkin M M. Cheminform, 2002, 33(32): 19.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/