Ru(II) Bipyridyl Complex and TiO2 Nanocomposite Based Biomolecule-free Photoelectrochemical Sensor for Highly Selective Determination of Ultra-trace Hg2+ in Aqueous Systems

Shuo Wu , Xinlan Yang , Yanqiu Zhao

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 370 -376.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 370 -376. DOI: 10.1007/s40242-019-8392-z
Article

Ru(II) Bipyridyl Complex and TiO2 Nanocomposite Based Biomolecule-free Photoelectrochemical Sensor for Highly Selective Determination of Ultra-trace Hg2+ in Aqueous Systems

Author information +
History +
PDF

Abstract

A biomolecule-free photoelectrochemical(PEC) probe(denoted as Ru-1) was designed, synthesized and coupled with TiO2 nanoparticles(NPs) for the highly sensitive and selective PEC detection of Hg2+, a model analyte with hypertoxicity to both human health and ecosystem. The probe Ru-1 was designed with Ru(II) bipyridyl complex as the chromophore, thiocyanate ligand as the recognition unit, and carboxylate group as the linkage site to connect Ru-1 to TiO2 nanoparticles. Under irradiation, Ru-1 shows strong affinity to TiO2 and good photophysical properties of strong visible light absorption, slow electron-hole(e-h+) recombination, and fast photoelectron injection to TiO2 nanoparticles via the π-bridge of 4-(2,2′-bipyridin)-4-yl-thiophene moiety. However, the specific coordination of Hg2+ with Ru-1 via the thiol moiety in the thiocyanate enlarges the band gap of the complex and reduces the photocurrent significantly. The synergistic interaction between TiO2 nanoparticles and the Ru-1 complex led to a selective PEC sensing strategy for Hg2+ detection. Detectable linear ranges from 10−12 g/mL to 10−7 g/mL and from 10−7 g/mL to 10−3 g/mL were obtained without the interference from possibly co-existed metal ions. The good analytical performances indicate the chemical probe based biomolecule-free PEC platform may offer a new route for the detection of biologically and environmentally important small molecules.

Keywords

Photoelectrochemical probe / Ru(II) bipyridyl complex / Hg2+ detection / Nanocomposites

Cite this article

Download citation ▾
Shuo Wu, Xinlan Yang, Yanqiu Zhao. Ru(II) Bipyridyl Complex and TiO2 Nanocomposite Based Biomolecule-free Photoelectrochemical Sensor for Highly Selective Determination of Ultra-trace Hg2+ in Aqueous Systems. Chemical Research in Chinese Universities, 2019, 35(3): 370-376 DOI:10.1007/s40242-019-8392-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pardo-Yissar V, Katz E, Wasserman J, Willner I. J. Am. Chem. Soc., 2003, 125: 622.

[2]

Zhao W W, Xu J J, Chen H Y. Chem. Soc. Rev., 2015, 44: 729.

[3]

Li R Y, Zhang Y, Tu W W, Dai Z H. ACS Appl. Mater. Interfaces, 2017, 9: 22289.

[4]

Cao H J, Liu S S, Tu W W, Bao J C, Dai Z H. Chem. Commun., 2014, 50: 13315.

[5]

Fan G C, Zhu H, Du D, Zhang J R, Zhu J J, Lin Y H. Anal. Chem., 2016, 88: 3392.

[6]

Li H B, Li J, Xu Q, Hu X Y. Anal. Chem., 2011, 83: 9681.

[7]

Haddour N, Chauvin J, Gondran C, Cosnier S. J. Am. Chem. Soc., 2006, 128: 9693.

[8]

Lin Y X, Zhou Q, Lin Y P, Lu M H, Tang D P. Anal. Chim. Acta, 2015, 887: 67.

[9]

Zhang B, Tang D P, Goryacheva I Y, Niessner R, Knopp D. Chem. Eur. J., 2013, 19: 2496.

[10]

Ma W G, Wang L N, Zhang N, Han D X, Dong X D, Niu L. Anal. Chem., 2015, 87: 4844.

[11]

Li HB, Li J, Zhu Y Y, Xie W Y, Shao R, Yao X X, Gao A Q, Yin Y D. Anal. Chem., 2018, 90: 5496.

[12]

Zhao W W, Zhang L, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 9456.

[13]

Wu S, Song H L, Song J, He C, Ni J, Zhao Y Q, Wang X Y. Anal. Chem., 2014, 86: 5922.

[14]

Dong D, Zheng D, Wang F Q, Yang X Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem., 2004, 76: 499.

[15]

Liang M M, Liu S L, Wei M Y, Guo L H. Anal. Chem., 2006, 78: 621.

[16]

Wu Y P, Zhang B T, Guo L H. Anal. Chem., 2013, 85: 6908.

[17]

Wang D M, Gai Q Q, Huang R F, Zheng X W. Biosens. Bioelectron., 2017, 98: 134.

[18]

Wang Q, Zakeeruddin S M, Nazeeruddin M K, Humphry-Baker R, Grätzel M. J. Am. Chem. Soc., 2006, 128: 4446.

[19]

Coronado E, Galán-Mascarós J R, Marti-Gastaldo C, Palomares E, Durrant J R, Vilar R, Gratzel M, Nazeeruddin M K. J. Am. Chem. Soc., 2005, 127: 12351.

[20]

Nazeeruddin M K, Censo D D, Humphry-Baker R, Grätzel M. Adv. Funct. Mater., 2006, 16: 189.

[21]

Jiang X, Karlsson K M, Gabrielsson E, Johansson E M J, Quintana M, Karlsson M, Sun L C, Boschloo G, Hagfeldt A. Adv. Funct. Mater., 2011, 21: 2944.

[22]

Oregan B, Gratzel M. Nature, 1991, 353: 737.

[23]

Brown D G, Schauer P A, Borau-Garcia J, Fancy B R, Berlinguette C P. J. Am. Chem. Soc., 2013, 135: 1692.

[24]

Galliano S, Bella F, Gerbaldi C, Falco M, Viscardi G, Grätzel M, Barolo C. Energy Technol., 2017, 5: 300.

[25]

Park H, Bae E, Lee J J, Park J, Choi W. J. Phys. Chem. B, 2006, 110: 8740.

[26]

Kilså K, Mayo E I, Brunschwig B S, Gray H B, Lewis N S, Winkler J R. J. Phys. Chem. B, 2004, 108: 15640.

[27]

Palaniappan V, Sathaiah S, Bist H D, Agarwala U M. J. Am. Chem. Soc., 1988, 110: 6403.

[28]

Hao Y Q, Cui Y L, Qu P, Sun W Z, Liu S P, Zhang Y T, Li D L, Zhang F Q, Xu M T. Electrochim. Acta, 2018, 259: 179.

[29]

Li J, Lu L P, Kang T F, Cheng S Y. Biosens. Bioelectron., 2016, 77: 740.

[30]

Suherman A L, Ngamchuea K, Tanner Ed E L, Sokolov S V, Holter J, Young N P, Compton R G. Anal. Chem., 2017, 89: 7166.

[31]

Hong M Q, Wang M Y, Wang J, Xu X Q, Lin Z Y. Biosens. Bioelectron., 2017, 94: 19.

[32]

Ru J X, Tang X L, Ju Z H, Zhang G L, Dou W, Mi X G, Wang C M, Liu W S. ACS Appl. Mater. Interfaces, 2015, 7: 4247.

[33]

Tang W X, Wang Z Z, Yu J, Zhang F, He P G. Anal. Chem., 2018, 90: 8337.

[34]

Gumpu M B, Veerapandian M, Krishnand U M, Rayappan J B B. Talanta, 2017, 162: 574.

[35]

Zhang Y, Shoaib A, Li J J, Ji M W, Liu J J, Xu M, Tong B, Zhang J T, Wei Q. Biosens. Bioelectron., 2016, 79: 866.

[36]

Wu S, Tu W J, Zhao Y Q, Wang X Y, Song J, Yang X L. Anal. Chem., 2018, 90(24): 14423.

[37]

Zhang B, Meng H Y, Wang X, Li J, Chang H H, Wei W L. Sens. Actuators B: Chem., 2018, 255: 2531.

[38]

Li S, Zhang F H, Chen L S, Zhang H, Li H X. Sens. Actuators B: Chem., 2018, 257: 9.

[39]

Wang D M, Gai Q Q, Huang R F, Zheng X W. Biosens. Bioelectron., 2017, 98: 134.

[40]

Roy S, Prasad A, Tevatia R, Saraf F R. Electrochem. Commun., 2018, 86: 94.

[41]

Hao Y Q, Cui Y L, Qu P, Sun W Z, Liu S P, Zhang Y T, Li D L, Zhang F Q, Xu M T. Electrochim. Acta, 2018, 259: 179.

[42]

Zhang L, Cole M J. ACS Appl. Mater. Interfaces, 2015, 7: 3427.

[43]

Fournier M, Hoogeveen A D, Bonke A S, Spiccia L, Simonov N A. Sustan. Eng. Fuels, 2018, 2: 1707.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/