Nanopore-based DNA Supersandwich Structure for Detection of Streptavidin

Yujuan Qiao , Yue Qian , Mengfei Liu , Nannan Liu , Xingxing Tang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 837 -841.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 837 -841. DOI: 10.1007/s40242-019-8378-0
Article

Nanopore-based DNA Supersandwich Structure for Detection of Streptavidin

Author information +
History +
PDF

Abstract

Natural and synthetic nanopores are increasingly popular tools in biosensors. In this work, the DNA su-persandwich structure, which was made from two specially designed probes has been used to be fabricated in solid nanopores. Integrating the idea of affinity between streptavidin and biotin, the DNA supersandwich structure with biotins was successfully constructed for streptavidin detection, and the limitation of detection was found to be 10 fmol/L. This nanodevice allows specific, sensitive and versatile detection of diverse analytes with easy operations, thus we believe that it could be developed to detect some disease-related molecular targets and play a considerable role in biotechnology.

Keywords

DNA supersandwich structure / Streptavidin / Detection / Solid-nanopore

Cite this article

Download citation ▾
Yujuan Qiao, Yue Qian, Mengfei Liu, Nannan Liu, Xingxing Tang. Nanopore-based DNA Supersandwich Structure for Detection of Streptavidin. Chemical Research in Chinese Universities, 2019, 35(5): 837-841 DOI:10.1007/s40242-019-8378-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee K, Lee H, Lee S H, Kim H M, Kim K B, Kim S J. Nanos-cale, 2017, 9: 18012.

[2]

Labib M, Sargent E H, Kelley S O. Chem. Rev., 2016, 116: 9001.

[3]

Kwak D K, Chae H, Lee M K, Ha J H, Goyal G, Kim M J, Kim K B, Chi S W. Angew. Chem. Int. Ed., 2016, 55: 5713.

[4]

Masson J F. ACS Sensors, 2017, 2: 16.

[5]

Chaturvedi P, Rodriguez S D, Vlassiouk I, Hansen I A, Smirnov S N. ACS Sensors, 2016, 1: 488.

[6]

Guzel F D, Avci H. IEEE Sens. J., 2018, 18: 2641.

[7]

Yang C, Liu L, Zeng T, Yang D W, Yao Z Y, Zhao Y L, Wu H C. Anal. Chem., 2013, 85: 7302.

[8]

Sheng Y Y, You Y, Cao Z, Liu L, Wu H C. Analyst, 2018, 143: 2411.

[9]

Meervelt V V, Soskine M, Singh S, Schuurman-Wolters G K, Wijma H J, Poolman B, Maglia G. J. Am. Chem. Soc., 2017, 139: 18640.

[10]

Guo B Y, Sheng Y Y, Zhou K, Liu Q S, Liu L, Wu H C. Angew. Chem. Int. Ed., 2018, 57: 3602.

[11]

Hu Z L, Li Z Y, Ying Y L, Zhang J J, Cao C, Long Y T, Tian H. Anal. Chem., 2018, 90: 4268.

[12]

Cao C, Ying Y L, Hu Z L, Liao D F, Tian H, Long Y T. Nat. Nanotechnol., 2016, 11: 713.

[13]

Nasir S, Ali M, Ensinger W. Nanotechnology, 2012, 23: 1.

[14]

Sexton L T, Horne L P, Sherrill S A, Bishop G W, Baker L A, Martin C R. J. Am. Chem. Soc., 2007, 129: 13144.

[15]

Kaya D, Dinler A, San N, Kececi K. Electrochim. Acta, 2016, 202: 157.

[16]

Yao H J, Zeng J, Zhai P F, Loa Z Z, Cheng Y X, Liu J D, Mo D, Duan J L, Wang L X, Sun Y M, Liu J. ACS Appl. Mat. Inter-faces, 2017, 9: 11000.

[17]

Buchsbaum S F, Nguyen G, Howorka S, Siwy Z S. J. Am. Chem. Soc., 2014, 136: 9902.

[18]

Kim S W, Lee J S, Lee S W, Kang B H, Kwon J B, Kim O S, Kim J S, Kim E S, Kwon D H, Kang S W. Sensors-Basel, 2017, 17: 856.

[19]

Liu L, Zhu L Z. Analyst, 2015, 140: 4895.

[20]

Kececi K, San N, Kaya D. Talanta, 2015, 144: 268.

[21]

Wanunu M, Meller A. Nano Lett., 2007, 7: 1580.

[22]

Ying Y L, Zhang J J, Meng F N, Cao C, Yao X Y, Willner I, Tian H, Long Y T. Sci. Rep.-Uk, 2013, 3: 1662.

[23]

Tang Z P, Lu B, Zhao Q, Wang J J, Luo K F, Yu D P. Small, 2014, 10: 4332.

[24]

Wanunu M, Dadosh T, Ray V, Jin J M, McReynolds L, Drndic M. Nat. Nanotechnol., 2010, 5: 807.

[25]

Venkatesan B M, Bashir R. Nat. Nanotechnol., 2011, 6: 615.

[26]

Rosen C B, Rodriguez-Larrea D, Bayley H. Nat. Biotechnol., 2014, 32: 179.

[27]

Hu R, Diao J J, Li J, Tang Z P, Li X Q, Leitz J, Long J G, Liu J K, Yu D P, Zhao Q. Sci. Rep., 2016, 6: 20776.

[28]

Haque F, Li J H, Wu H C, Liang X J, Guo P X. Nano Today, 2013, 8: 56.

[29]

Wen S, Zeng T, Liu L, Zhao K, Zhao Y L, Liu X J, Wu H C. J. Am. Chem. Soc., 2011, 133: 18312.

[30]

Tsutsui M, Tanaka M, Marui T, Yokota K, Yoshida T, Arima A, Tonomura W, Taniguchi M, Washio T, Okochi M, Kawai T. Anal. Chem., 2018, 90: 1511.

[31]

Yang F, Zuo X L, Li Z H, Deng W P, Shi J Y, Zhang G J, Huang Q, Song S P, Fan C H. Adv. Mater., 2014, 26: 4671.

[32]

Ge Z L, Pei H, Wang L H, Song S P, Fan C H. Sci. Chi. Chem., 2011, 54: 1273.

[33]

Wei Y P, Liu X P, Mao C J, Niu H L, Song J M, Jin B K. Bio-sens Bioelectron, 2018, 103: 99.

[34]

Wang J, Aki M, Onoshima D, Arinaga K, Kaji N, Tokeshi M, Fu-jita S, Yokoyama N, Baba Y. Biosens Bioelectron, 2014, 51: 280.

[35]

Yu Y J, Zhou Y, Li Q S, Yang Y, Shi J G, Li M Y, Yao W G, Wang J N, Dong W F, Qi Z M. Chem. Res. Chinese Universities, 2013, 296: 1219.

[36]

Yao G, Li J, Chao J, Pei H, Liu H J, Zhao Y, Shi J Y, Huang Q, Wang L H, Huang W, Fan C H. Angew. Chem. Int. Ed., 2015, 54: 2966.

[37]

Wei R S, Gatterdam V, Wieneke R, Tampe R, Rant U. Nat. Na-notechnol., 2012, 7: 257.

[38]

Liu N N, Jiang Y N, Zhou Y H, Xia F, Guo W, Jiang L. Angew. Chem. Int. Ed., 2013, 52: 2007.

[39]

Wei R S, Tampe R, Rant U. Biophys. J., 2012, 102: 429.

[40]

Zuo X L, Xia F, Xiao Y, Plaxco K W. J. Am. Chem. Soc., 2010, 132: 1816.

[41]

Xia F, Zuo X L, Yang R Q, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen J D, Hsu B B Y, Heeger A J, Plaxco K W. Proc. Natl. Acad. Sci. USA, 2010, 107: 10837.

[42]

Han A, Creus M, Schurmann G, Linder V, Ward T R, de Rooij N F, Staufer U. Anal. Chem., 2008, 80: 4651.

[43]

Liu N N Y Z K, Lou X D, Wei B M, Zhang J J, Gao P C, Hou R Z, Xia F. Aanal. Chem., 2015, 87: 4037.

[44]

Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L P, Wang L, Cao L X, Yang Y, Xue J M, Song Y L, Wang Y G, Liu D S, Jiang L. J. Am. Chem. Soc., 2009, 131: 7800.

[45]

Guo W, Cao L X, Xia J C, Nie F Q, Ma W, Xue J M, Song Y L, Zhu D B, Wang Y G, Jiang L. Adv. Funct. Mater., 2010, 20: 1339.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/