Profiling of Ubiquitination Modification Sites in Talin in Colorectal Carcinoma by Mass Spectrometry

Ke Wang , Lu Qiao , Xiaoou Li , Shimeng Li , Yimin Wang , Xuesong Xu , Chengyan He , Ling Fang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 377 -381.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 377 -381. DOI: 10.1007/s40242-019-8377-1
Article

Profiling of Ubiquitination Modification Sites in Talin in Colorectal Carcinoma by Mass Spectrometry

Author information +
History +
PDF

Abstract

Talin protein was partially purified from human colorectal carcinoma tissues, which was subject to tryptic digestion. Immunoaffinity precipitation with specific antibodies that recognize diglycyl-lysine(Lys) remnants from tryptic digestion of ubiquitinated peptides was used to enrich ubiquitinated sites in talin. Mass spectrometry coupled with capillary reverse-phase high-performance liquid chromatography was used to analyze the enriched peptides. Specifically, four peptides containing diglycyl-Lys remnants from talin, namely, TAK(ub)VLVEDTK, QQQYK(ub) FLPSELRDEH, K(ub)STVLQQQYNR, and EGILK(ub)TAK can be determined using mass spectrometric data. This study provides an analytical method for further study in the relationship between ubiquitination modification of talin and its biological activity in colorectal cancer tissues with different pathological processes.

Keywords

Talin / Ubiquitination / Colorectal carcinoma / Mass spectrometry

Cite this article

Download citation ▾
Ke Wang, Lu Qiao, Xiaoou Li, Shimeng Li, Yimin Wang, Xuesong Xu, Chengyan He, Ling Fang. Profiling of Ubiquitination Modification Sites in Talin in Colorectal Carcinoma by Mass Spectrometry. Chemical Research in Chinese Universities, 2019, 35(3): 377-381 DOI:10.1007/s40242-019-8377-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Chen Z, Li J. Medicine(Baltimore), 2017, 96: e8242.

[2]

Arnold M, Sierra M S, Laversanne M, Soerjomataram I, Jemal A, Bray F. Gut, 2017, 66: 683.

[3]

AI Bandar M H, Kim N K. Oncol. Rep., 2017, 37: 2553.

[4]

Balacescu O, Sur D, Cainap C, Visan S, Cruceriu D, Man-zat-Saplacan R, Muresan M S, Balacescu L, Lisencu C, Irimie A. Int. J. Mol. Sci., 2018, 19(12): 3711.

[5]

Desiniotis A, Kyprianou N. Int. Rev. Cell. Mol. Biol., 2011, 289: 117.

[6]

Yang H J, Chen J Z, Zhang W L, Ding Y Q. Cancer Invest., 2010, 28(2): 127.

[7]

Chinthalapudi K, Rangarajan E S, Izard T. Proc. Natl. Acad. Sci. USA, 2018, 115: 10339.

[8]

Huang Z, Barker D, Gibbins J M, Dash P R. Exp. Cell Res., 2018, 370: 417.

[9]

Yates M, Maréchal A. Int. J. Mol. Sci., 2018, 19(10): 2909.

[10]

Abreha M H, Dammer E B, Ping L, Zhang T, Duong D M, Gearing M, Lah J J, Levey A I, Seyfried N T. Proteomics, 2018, 78: e1800108.

[11]

Peng Q S, Li G P, Sun W C, Yang J B, Quan G H, Liu N. Chinese Journal of Analytical Chemistry, 2016, 44: 850.

[12]

Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg M H. Nat. Cell Biol., 2009, 11: 624.

[13]

Liu N, Song W, Wang P, Lee K C, Cai Z, Chen H. Proteomics, 2010, 10: 1875.

[14]

Liu N, Song W, Lee KC, Wang P, Chen H, Cai Z. J. Am. Soc. Mass Spectrom., 2009, 20: 312.

[15]

Cheng W, Zhan F L, Li S M, Yang J B, Wang Y, Liu N. Chinese Journal of Analytical Chemistry, 2019, 47: 30.

[16]

Murphy S, Zweyer M, Henry M, Meleady P, Mundegar R R, Swandulla D, Ohlendieck K. Clin. Proteomics, 2018, 75: 34.

[17]

Yang G Y, Zhao H F, Xie F, Li Y, Sun L, Shi Q H, He C Y, Liu N, Song L N. Chem. Res. Chinese Universities, 2012, 28(6): 1031.

[18]

Yang H, Su R, Wishnok J S, Liu N, Chen C, Liu S, Tannenbaum S R. Mikrochim. Acta, 2019, 786: 104.

[19]

Liu N, Zhao L C, He C Y, Cai Z W. Curr. Anal. Chem., 2012, 8: 22.

[20]

Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H. Proteomics, 2007, 7: 351.

[21]

Pascovici D, Wu J X, McKay M J, Joseph C, Noor Z, Kamath K, Wu Y, Ranganathan S, Gupta V, Mirzaei M. Int. J. Mol. Sci., 2019, 20(1): 16.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/