POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen

Pengfei Dong , Na Li , Haiyan Zhao , Min Cui , Cong Zhang , Hongyan Han , Jujie Ren

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 592 -597.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 592 -597. DOI: 10.1007/s40242-019-8370-8
Article

POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen

Author information +
History +
PDF

Abstract

A new type of electrochemical sensor based on multi-walled carbon nanotubes(MWCNTs), K2H4SiW11CuO39·6H2O(SiW11Cu) and gold nanoparticles(AuNPs) was prepared for the simultaneous detection of bisphenol A and acetaminophen. Differential pulse voltammetry(DPV), cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) were used for electrochemical characterization, and Fourier transform infrared spectroscopy(FTIR) was used to characterize the structure of polyoxometalates. Electrochemical experimental results show that the composite modified electrodes have good electrochemical activity as well as current response values of bisphenol A and acetaminophen when pH=7.0. At the same time, the modified electrode exhibits good stability and reproduction, and has good anti-interference ability to other substances. In practical application, the sensor obtained satisfactory results.

Keywords

Polyoxometalate / Gold nanoparticles / Electrochemical sensor / Bisphenol A / Acetaminophen

Cite this article

Download citation ▾
Pengfei Dong, Na Li, Haiyan Zhao, Min Cui, Cong Zhang, Hongyan Han, Jujie Ren. POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen. Chemical Research in Chinese Universities, 2019, 35(4): 592-597 DOI:10.1007/s40242-019-8370-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad J. Hepatology and Transplant Hepatology, A Case Based Approach, 2010.

[2]

Rochester J R. Reprod. Toxicol, 2013, 42: 132.

[3]

Wang Y, Liu G, Hou X, Huang Y, Li C, Wu K. Microchim. Acta, 2016, 183: 689.

[4]

Schecter A, Malik N, Haffner D, Smith S, Harris T R, Paepke O, Birnbaum L. Environ. Sci. Technol., 2010, 44: 9425.

[5]

Zimmers S M, Browne E P O, Keefe P W, Anderton D L, Kramer L, Reckhow D A, Arcaro K F. Chemosphere, 2014, 104: 237.

[6]

Knochen M, Giglio J, Reis B F. J. Pharm. Biomed. Anal., 2003, 33: 191.

[7]

Capella-Peiro M E, Bose D, Rubert M F, Esteve-Romero J. J. Chromatogr. B, 2006, 839: 95.

[8]

Murtaza G, Khan S A, Shabbir A, Mahmood A B, Asad M H H, Falsoom F, Malik N S, Hussain I. Sci. Res. Essays, 2011, 6: 417.

[9]

Dewani A P, Dabhade S M, Bakal R L, Gadewar C K C-, war A V, Patra S. Arab. J. Chem., 2015, 8: 591.

[10]

Kong X Y, Wang Y Y, Zhang Q Q, Zhang T R, Teng Q Q, Wang L, Wang H, Zhang Y F. Journal of Colloid & Interface Science, 2017, 505: 615.

[11]

Rebocho S, Cordas C M, Viveiros R, Casimiro T. Journal of Supercritical Fluids, 2018, 135: 98.

[12]

Yang Q, Wu X, Peng H, Fu L, Li J, Xiong H, Chen L. Talanta, 2017, 176: 595.

[13]

Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B. Talanta, 2018, 179: 37.

[14]

Yang Y, Zhang H, Huang C, Jia N. Sensors & Actuators B: Chem., 2016, 235: 408.

[15]

Messaoud N B, Ghica M E, Dridi C, Ali M B, Brett C M A. Sensors & Actuators B Chem., 2017, 253: 513.

[16]

Zhang J, Ting B P, Yan Y T, Ying J Y. Chem. Mater, 2011, 23: 4688.

[17]

Song Y F, Tsunashima R. Chem. Soc. Rev., 2012, 41: 7384.

[18]

Chen X L, Souvanhthong B, Wang H. Applied Catalysis B: Environmental, 2013, 138-139: 161.

[19]

Zhou W H, Li N, Cao M H. Materials Letters, 2013, 99: 68.

[20]

Jin G, Wang S M, Chen W L. J. Mater. Chem. A, 2013, 1: 6727.

[21]

Palilis L C, Vasilopoulou M, Douvas A M. Solar Energy Materials & Solar Cells, 2013, 114: 205.

[22]

Kannan P, John S A. Anal. Chim. Acta, 2010, 663: 158.

[23]

Zeng S, Yong K T, Roy I, Dinh X Q, Yu X, Luan F. Plasmonics, 2011, 6: 491.

[24]

Huang K J, Liu Y J, Liu Y M, Wang L L. J. Hazard. Mater, 2014, 276: 207.

[25]

Daniel M C, Astruc D. Chem. Rev, 2004, 104: 293.

[26]

Li N, Huang R D. Journal of Solid State Chemistry, 2016, 233: 320.

[27]

Cai H X, Wu X F, Wu QY, Cao F H, Yan W F. RSC Adv., 2016, 6: 84689.

[28]

Tang S P, Wu W F, Fu Z H, Zou S, Liu Y C, Zhao H H, Kirk S R, Yin D L. Chem. Cat. Chem., 2015, 7: 2637.

[29]

Teng D, Wang Q, Li N, Zhao H Y, Huang R D. Journal of Molecular Science, 2019, 35: 148.

[30]

Han Z B, Wang E B, Luan G Y, Hu C W. Chem. Res. Chinese Universities, 2001, 17: 356.

[31]

Belin T, Epron F. Materials Science & Engineering B(Solid-State Materials for Advanced Technology), 2005, 119: 105.

[32]

Chen L, Tian L, Liu L, Tian X F, Song W B, Xua H D, Wang X H. Sensors Actuat. B: Chem., 2005, 110: 271.

[33]

Yang Y Y, Zhang H, Huang C S, Jia N Q. Sensors and Actuators B, 2016, 235: 408.

[34]

Lin Y Q, Liu K Y, Liu C Y, Yin L, Kang Q, Li L B, Li B. Elec-trochimica Acta, 2014, 133: 492.

[35]

Qin W, Liu X, Chena H, Yanga J. Anal. Methods, 2014, 6: 5734.

[36]

Zhang L, Wen Y P, Yao Y Y, Wang Z F, Duan X M, Xu J K. Chin. Chem. Lett., 2014, 25: 517.

[37]

Hasanpour F, Taei M, Tahmasebi S. Journal of Food & Drug Analysis, 2018, 26: 879.

[38]

Huang H, Li Y, Liu J, Tong J, Su X. Food Chem, 2015, 185: 233.

[39]

Cao F, Dong Q C, Li C L, Chen J. Sensors & Actuators B: Chem, 2018, 256: 143.

[40]

Baghayeri M, Namadchian M. Electrochim. Acta, 2013, 108: 22.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/