Synthesis and Characterization of Cu Decorated Zeolite A@Void@Et-PMO Nanocomposites for Removal of Methylene Blue by a Heterogeneous Fenton Reaction

Xiayu Li , Shangjing Zeng , Xuejian Qu , Jinyu Dai , Xiaofang Liu , Runwei Wang , Zongtao Zhang , Shilun Qiu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 363 -369.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 363 -369. DOI: 10.1007/s40242-019-8362-8
Article

Synthesis and Characterization of Cu Decorated Zeolite A@Void@Et-PMO Nanocomposites for Removal of Methylene Blue by a Heterogeneous Fenton Reaction

Author information +
History +
PDF

Abstract

In this paper, hydrothermal synthesized nano zeolite A has been encapsulated with ethyl bridged periodic mesoporous organosilica(Et-PMO) shell through a simple modified Stober method and an organosilane-directed growth-induced etching strategy, the obtained yolk-shell structured A@Et-PMO nanocomposite(YS-A@Et-PMO) was further functionalized by the impregnation of copper ions, realizing the composite material with hierarchical porous and catalytic properties. The morphology and metal content of the Cu/A and Cu/YS-A@Et-PMO were fully characterized. As compared to the parent material, the composite Cu/YS-A@Et-PMO has an efficient adsorption and catalytic degradation performance on methylene blue(MB), the removal efficiency reached as high as 95% of 60 mg/L MB within 10 min. These novel structured porous composites may have great potential application for the removal of organic dye including waste effluents.

Keywords

Fenton reaction / Yolk-shell structure / Zeolite A / Et-PMO

Cite this article

Download citation ▾
Xiayu Li, Shangjing Zeng, Xuejian Qu, Jinyu Dai, Xiaofang Liu, Runwei Wang, Zongtao Zhang, Shilun Qiu. Synthesis and Characterization of Cu Decorated Zeolite A@Void@Et-PMO Nanocomposites for Removal of Methylene Blue by a Heterogeneous Fenton Reaction. Chemical Research in Chinese Universities, 2019, 35(3): 363-369 DOI:10.1007/s40242-019-8362-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang J. H., Shao X. Z., Tian G. H., Bao W. R. J. Porous Mater., 2018, 25: 207.

[2]

Shimizu K., Sawabe K., Satsuma A. Catal. Sci. Technol., 2011, 1: 331.

[3]

Chi Y., Zhao L., Yuan Q., Li Y. J., Zhang J. N., Tu J. C., Li N., Li X. T. Chem. Eng. J., 2012, 195: 254.

[4]

Saad R., Thiboutot S., Ampleman G., Dashan W., Hawari J. Chemosphere, 2010, 81: 853.

[5]

Ma J., Yu F., Zhou L., Yang M. X., Luan J. S., Tang Y. H., Fan H. B., Yuan Z. W., Chen J. H. ACS Appl. Mater. Inter., 2012, 4: 5749.

[6]

Chen T., Xiong Y. H., Qin Y. M., Yang H. G., Zhang P., Ye F. G. RSC Adv., 2017, 7: 336.

[7]

Neamtu M., Catrinescu C., Kettrup A. Appl. Catal. B: Environ., 2004, 51: 149.

[8]

Perez M., Torrades F., Domenech X., Domenech X., Peral J. Water Res., 2002, 36: 2703.

[9]

Salem I. A. Appl. Catal. B: Environ., 2000, 28: 153.

[10]

Zhou L. C., Shao Y. M., Liu J. R., Ye Z. F., Zhang H., Ma J. J., Jia Y., Gao W. G., Li Y. F. ACS Appl. Mater. Inter., 2014, 6: 7275.

[11]

Oliveira R. L., Shakeri M., Meeldijk J. D., de Jong K. P., de Jongh P. E. Micro. Meso. Mater., 2015, 201: 234.

[12]

Zheng K., Di M., Zhang J., Bao W., Liang D., Pang G., Fang Z., Li C. Chem. Res. Chinese Universities, 2017, 33(4): 648.

[13]

Ai Z. H., Xiao H. Y., Mei T., Liu J., Zhang L. Z., Deng K. J., Qiu J. R. J. Phys. Chem. C, 2008, 112: 11929.

[14]

Xia M., Long M. C., Yang Y. D., Chen C., Cai W. M., Zhou B. X. Appl. Catal. B: Environ., 2011, 110: 118.

[15]

Raut S. S., Kamble S. P., Kulkarni P. S. Chmosphere, 2016, 159: 359.

[16]

Huang C. C., Lo S. L., Lien H. L. Chem. Eng. J., 2012, 203: 95.

[17]

Li P., Song Y., Wang S., Tao Z., Yu S. L., Liu Y. N. Ultrason. Sonochem., 2015, 22: 132.

[18]

Lin S., Shi L., Yu T. T., Li X. B., Yi X. F., Zheng A. M. Micro. Meso. Mater., 2015, 207: 111.

[19]

Zhu J. J., Xie X., Carabineiro S. A. C., Tavares P. B., Figueiredo J. L., Schomacker R., Thomas A. Energ. Environ. Sci., 2011, 4: 2020.

[20]

Egeblad K., Christensen C. H., Kustova M., Christensen C. H. Chem. Mater., 2007, 20: 946.

[21]

Pérez-Ramírez J., Christensen C. H., Egeblad K., Christensen C. H., Groen J. C. Chem. Soc. Rev., 2008, 37: 2530.

[22]

Tao Y. S., Kanoh H. F., Abrams L., Kaneko K. Chem.Rev., 2006, 106: 896.

[23]

Hao N., Wang H. T., Webley P. A., Zhao D. Y. Micro. Meso. Mater., 2010, 132: 543.

[24]

Dahaghin Z., Mousavi H. Z., Sajjadi M. J. Sol-Gel Sci. Techn., 2018, 86: 217.

[25]

Ghosh B. K., Hazra S., Naik B., Ghosh N. N. Powder Technol., 2015, 269: 371.

[26]

Hajiaghababaei L., Badiei A., Ganjali M. R., Heydari S., Khaniani Y., Ziarani G. M. Desalination, 2011, 266: 182.

[27]

Shin J. H., Park S. S., Selvaraj M., Ha C. S. J. Porous Mater., 2012, 19: 29.

[28]

Rana V. K., Selvaraj M., Parambadath S., Chu S. W., Park S. S., Mishra S., Singh R. P., Ha C. S. J. Solid State Chem., 2012, 194: 392.

[29]

Zou H. B., Sun Q. L., Fan D. Y., Fu W. W., Liu L. J., Wang R. W. Catalysts, 2015, 5: 2134.

[30]

Wei Y., Li X. M., Elzatahry A. A., Zhang R. Y., Wang W. X., Tang X. T., Yang J. P., Wang J. X., Al-Dahyan D., Zhao D. Y. RSC Adv., 2016, 6: 51470.

[31]

Teng Z. G., Su X. D., Zheng Y. Y., Zhang J. J., Liu Y., Wang S. J., Wu J., Chen G. T., Wang J. D., Zhao D. Y., Lu G. M. J.^Am. Chem. Soc., 2015, 137: 7935.

[32]

Dai J. Y., Zou H. B., Wang R. W., Wang Y., Shi Z. Q., Qiu S. L. Green Chem., 2017, 19: 1336.

[33]

Yu H. J., Lv Y. Y., Ma K. Y., Wang C. G., Xue Z. T., Zhao Y. J., Deng Y. H., Dai Y., Zhao D. Y. J. Colloid Inter. Sci., 2014, 428: 251.

[34]

Lopes J. H., Nogueira F. G. E., Gonçalves M., Oliveira L. C. B. Chem. React. Eng. Catal., 2015, 10: 237.

[35]

Zou H. B., Wang R. W., Li X. X., Wang X., Zeng S. J., Li L., Zhang Z. T., Qiu S. L. J. Mater. Chem. A, 2014, 2: 12403.

[36]

Gan T., Wang Z. K., Shi Z. X., Zheng D. Y., Sun J. Y., Liu Y. M. Biosens. Bioelectron., 2018, 112: 23.

[37]

Do Q. C., Kim D. G., Ko S. O. ACS Appl. Mater. Inter., 2017, 9: 28508.

[38]

Wang J., Liu C., Tong L., Li J. S., Luo R., Qi J. W., Li Y., Wang L. J. RSC Adv., 2015, 5: 69593.

[39]

Dong C. S., Zhong M. L., Huang T., Ma M. X., Wortmann D., Brajdic M., Kelbassa I. ACS Appl. Mater. Inter., 2011, 3: 4332.

[40]

Tang X. K., Feng Q. M., Liu K., Li Z. S., Wang H. J. Mater. Sci., 2018, 53: 369.

[41]

Wang Y. B., Zhao H. Y., Li M. F., Fan J. Q., Zhao G. H. Appl. Catal. Environ., 2014, 147: 534.

[42]

Vinothkannan M., Karthikeyan C., Gnana K. G., Kim A. R., Yoo J. D. Spectrochim. Acta A, 2015, 136: 256.

[43]

Wang J., Liu C., Hussain I., Li C., Li J. S., Sun X. Y., Shen J. Y., Han W. Q., Wang L. J. RSC Adv., 2016, 6: 54623.

[44]

Nassar M. Y., Abdelrahman E. A. J. Mol. Liq., 2017, 242: 364.

[45]

Nassar M. Y., Ahmed I. S., Samir I. Spectrochim. Acta A, 2014, 131: 329.

[46]

Wang S., Liu L. J. Hazard.Mater., 2017, 340: 445.

[47]

Deng J. H., Wen X. H., Wang Q. Mater. Res. Bull., 2012, 47: 3369.

[48]

Jafari A. J., Kakavandi B., Jaafarzadeh N., Kalantary R. R., Ahmadi M., Babaei A. A. J. Ind. Eng. Chem., 2017, 45: 323.

[49]

Zhan Y. Z., Zhou X., Fu B., Chen Y. L. J.Hazard Mater., 2011, 187: 348.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/