Synthesis of Poly(isosorbide carbonate) via Melt Polycondensation Catalyzed by a KF/MgO Catalyst

Xiaolong Shen , Shaoying Liu , Qingyin Wang , Hua Zhang , Gongying Wang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 721 -728.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 721 -728. DOI: 10.1007/s40242-019-8356-6
Article

Synthesis of Poly(isosorbide carbonate) via Melt Polycondensation Catalyzed by a KF/MgO Catalyst

Author information +
History +
PDF

Abstract

MgO loaded with KF was prepared by using the impregnation method and was employed as the catalyst for the direct transesterification of diphenyl carbonate(DPC) with isosorbide to synthesize high-molecular-weight poly(isosorbide carbonate)(PIC). The relationship between physical-chemical properties and catalytic performance for KF/MgO in this melt process was investigated by various characterization techniques. The basic site amount and strength were found to be responsible for this transesterification process, and the medium and strong basic sites tended to promote the polycondensation reaction. 20-KF/MgO-500 exhibited the best catalytic performance, giving PIC with M w of 84200 and glass transition temperature(T g) of 173 °C under optimal conditions. Additionally, 20-KF/MgO-500 was found to catalyze the transerification of DPC with isosorbide and other diols to synthesize the corresponding poly(aliphatic diol-co-isosorbide carbonate)s(PAICs). This excellent activity can be ascribed to the presence of an abundance of basic sites and their specific basic strength on the surface of KF/MgO.

Keywords

KF/MgO / Poly(isosorbide carbonate) / Diphenyl carbonate / Transesterification / Solid base

Cite this article

Download citation ▾
Xiaolong Shen, Shaoying Liu, Qingyin Wang, Hua Zhang, Gongying Wang. Synthesis of Poly(isosorbide carbonate) via Melt Polycondensation Catalyzed by a KF/MgO Catalyst. Chemical Research in Chinese Universities, 2019, 35(4): 721-728 DOI:10.1007/s40242-019-8356-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y Z, Yao J Y, Cao H, Leng B X, Shao Z Z. Chem. Res. Chinese Universites, 2012, 28(5): 921.

[2]

Patwa R, Kumar A, Katiyar V J. Appl. Polym. Sci., 2018, 135: 46590.

[3]

Chang Q, Li L, Yang D L, Zhang M Y, Ton-That M T, Hu W, Lu S. Chem. Res. Chinese Universites, 2015, 31(4): 640.

[4]

Bersot J C, Jacquel D, Saint-Loup P, Macromol P. Chem. Phys., 2011, 212(19): 2114.

[5]

Gioia C, Vannini M, Marchese P, Minesso A, Cavalieri R, Colonna M, Celli A. Green Chem., 2014, 16(4): 1807.

[6]

Caouthar A A, Loupy A, Bortolussi M, Blais J C, Dubreucq L, Meddour A. Polym. Chem., 2005, 43(24): 6480.

[7]

Wroblewska A, Zych A, Thiyagarajan S, Dudenko D, van Es D, Hansen M R, Koning C, Duchateau R, Jasinska-Walc L. Polym. Chem., 2015, 6(22): 4133.

[8]

Kim H J, Kang M S, Knowles J C, Gong M S. J. Bio. Mater. Appl., 2014, 29(3): 454.

[9]

Javni I, Bilic O, Bilic N, Petrovic Z S, Eastwood E S, Zhang F, IIavsky J J. Appl. Polym. Sci., 2015, 132(47): 42830.

[10]

Chatti S, Schwarz S, Kricheldorf H R. Macromolecules, 2006, 39(26): 9064.

[11]

Park J H, Jeon J Y, Lee J J, Jang Y, Varghese J K, Lee B Y. Macromolecules, 2013, 46(9): 3301.

[12]

Feng L, Zhu W X, Li C C, Guan G H, Zhang D, Xiao Y N, Zheng L C. Polym. Chem., 2014, 6(4): 633.

[13]

Li Q, Zhu W X, Li C C, Guan G H, Zhang D, Xiao Y N, Zheng L C. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(6): 1387.

[14]

Eo Y S, Rhee H W, Shin S H. J. Ind. Eng. Chem., 2016, 37: 42.

[15]

Sun W, Xu F, Cheng W G, Sun J, Ning G Q, Zhang S J. Chinese J. Catal., 2017, 38(5): 908.

[16]

Ma C K, Xu F, Cheng W G, Tan X, Su Q, Zhang S J. ACS Sustainable Chem. Eng., 2018, 6: 2684.

[17]

Zhang M, Lai W Q, Su L L, Wu G Z. Ind. Eng. Chem. Res., 2018, 57(14): 4824.

[18]

Fan Y P, Wang Q Y, Yang X G, Yao J, Wang G Y. Chinese J. Chem. Eng., 2009, 17(5): 883.

[19]

Liang X Z, Gao S, Yang J G, He M Y. Renew. Energ., 2009, 34: 2215.

[20]

Wan T, Yu P, Gong S K, Li Q, Luo Y B. J. Chem. Eng., 2008, 25: 998.

[21]

Subramaniapillai N, Muhammed N, Kader M M S B, Narayanan A. Environ. Prog. Sustain., 2015, 34(4): 1166.

[22]

Xie W, Huang X. Catal. Lett., 2006, 107(1/2): 53.

[23]

Weinstock L M, Stevenson J M, Tomellin S A, Pan S H, Utne T, Jobson R B, Reinhold D F. Tetrahedron. Lett., 1986, 27: 3845.

[24]

Niu X Y, Xing C M, Jiang W, Dong Y L, Yuan F L, Zhu Y J. Reac. Kinet. Mech. Cat., 2013, 109: 167.

[25]

Gao L, Xu B, Xiao G, Lv J. Energ. Fuel., 2008, 22: 3531.

[26]

Xu C, Sun J, Zhao B, Liu Q. Appl. Catal., B, 2010, 99: 111.

[27]

Di Serio M, Tesser R, Ferrara A, Santacesaria E J. Mole. Catal. A: Chem., 2004, 212: 251.

[28]

Nair P A, Ramesh P J. Appl. Polym. Sci., 2011, 122(3): 1946.

[29]

Ando T, Brown S J, Clark J H, Cork D G, Hanafusa T, Ichihara J, Miller J M, Robertson M S J. J. Chem. Soc. Perk. T. 2, 1986, 8: 1133.

[30]

Zhu J H, Chun Y, Qin Y, Xu Q H. Micropor. Mesopor. Mater., 1998, 24: 19.

[31]

Liu Z M, Wang J W, Kang M Q, Yin N, Wang X K, Tan Y S, Zhu Y L. J. Ind. Eng. Chem., 2015, 21: 394.

[32]

Wang S, Hao P F, Li S X, Zhang A L, Guan Y Y, Zhang L M. Appl Catal. A: Gen., 2017, 542: 174.

[33]

Yan S, Kim M, Salley S O, Ng K Y S. Appl. Catal. A: Gen., 2009, 360: 163.

[34]

Zheng L P, Xia S X, Hou Z T, Zhang M Y, Hou Z Y. Chinese J. Catal., 2014, 35(3): 310.

[35]

Hájek M, Kutálek P, Smolákováet L, Troppová I, Čapek L, Kubička D, Kocík J, Thanh D N. Chem. Eng. J., 2015, 263: 160.

[36]

Wang Z Q, Yang X G, Liu S Y, Zhang H X, Wang G Y. Chem. Res. Chinese Universites, 2016, 32(3): 512.

[37]

Wang Z Q, Yang X G, Li J G, Liu S Y, Wang G Y. J. Mol. Catal. A: Chem., 2016, 424: 77.

[38]

Zhao H. M., Jiang M. J., Tian H. S., Acta Polymerica Sinica(in Chinese), 2011, (1), 192

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/